Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Reliable Identification of Vehicle-Boarding Actions Based on Fuzzy Inference System

Full metadata record
DC Field Value Language
dc.contributor.authorAhn, DaeHan-
dc.contributor.authorPark, Homin-
dc.contributor.authorHwang, Seokhyun-
dc.contributor.authorPark, Taejoon-
dc.date.accessioned2021-06-22T14:41:40Z-
dc.date.available2021-06-22T14:41:40Z-
dc.date.created2021-01-21-
dc.date.issued2017-02-
dc.identifier.issn1424-8220-
dc.identifier.urihttps://scholarworks.bwise.kr/erica/handle/2021.sw.erica/10515-
dc.description.abstractExisting smartphone-based solutions to prevent distracted driving suffer from inadequate system designs that only recognize simple and clean vehicle-boarding actions, thereby failing to meet the required level of accuracy in real-life environments. In this paper, exploiting unique sensory features consistently monitored from a broad range of complicated vehicle-boarding actions, we propose a reliable and accurate system based on fuzzy inference to classify the sides of vehicle entrance by leveraging built-in smartphone sensors only. The results of our comprehensive evaluation on three vehicle types with four participants demonstrate that the proposed system achieves 91.1% +/- 94.0% accuracy, outperforming other methods by 26.9% +/- 38.4% and maintains at least 87.8% accuracy regardless of smartphone positions and vehicle types.-
dc.language영어-
dc.language.isoen-
dc.publisherMDPI-
dc.titleReliable Identification of Vehicle-Boarding Actions Based on Fuzzy Inference System-
dc.typeArticle-
dc.contributor.affiliatedAuthorPark, Taejoon-
dc.identifier.doi10.3390/s17020333-
dc.identifier.scopusid2-s2.0-85012285904-
dc.identifier.wosid000395482700117-
dc.identifier.bibliographicCitationSENSORS, v.17, no.2, pp.1 - 10-
dc.relation.isPartOfSENSORS-
dc.citation.titleSENSORS-
dc.citation.volume17-
dc.citation.number2-
dc.citation.startPage1-
dc.citation.endPage10-
dc.type.rimsART-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.isOpenAccessY-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaEngineering-
dc.relation.journalResearchAreaInstruments & Instrumentation-
dc.relation.journalWebOfScienceCategoryChemistry, Analytical-
dc.relation.journalWebOfScienceCategoryEngineering, Electrical & Electronic-
dc.relation.journalWebOfScienceCategoryInstruments & Instrumentation-
dc.subject.keywordPlusANFIS-
dc.subject.keywordPlusFuzzy systems-
dc.subject.keywordPlusSignal encoding-
dc.subject.keywordPlusSmartphones-
dc.subject.keywordPlusVehicles-
dc.subject.keywordAuthordriver identification-
dc.subject.keywordAuthorfuzzy inference system-
dc.subject.keywordAuthorvehicle-boarding actions-
dc.subject.keywordAuthorinertial sensors-
dc.subject.keywordAuthordriving while distracted-
dc.identifier.urlhttps://www.mdpi.com/1424-8220/17/2/333-
Files in This Item
Go to Link
Appears in
Collections
COLLEGE OF ENGINEERING SCIENCES > DEPARTMENT OF ROBOT ENGINEERING > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Park, Taejoon photo

Park, Taejoon
ERICA 공학대학 (DEPARTMENT OF ROBOT ENGINEERING)
Read more

Altmetrics

Total Views & Downloads

BROWSE