Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Metal-insulator transition and interfacial thermal transport in atomic layer deposited Ru nanofilms characterized by ultrafast terahertz spectroscopy

Full metadata record
DC Field Value Language
dc.contributor.authorShin, H.J.-
dc.contributor.authorLee, J.-M.-
dc.contributor.authorBae, S.-
dc.contributor.authorKim, Woo-Hee-
dc.contributor.authorSim, Sangwan-
dc.date.accessioned2021-07-28T08:11:01Z-
dc.date.available2021-07-28T08:11:01Z-
dc.date.created2021-07-14-
dc.date.issued2021-10-15-
dc.identifier.issn0169-4332-
dc.identifier.urihttps://scholarworks.bwise.kr/erica/handle/2021.sw.erica/105780-
dc.description.abstractRuthenium nanofilms are a promising material for wide applications in nanoelectronics, such as ultrathin electrodes and metallization. However, little is known about their electrical and thermal properties. Here, we utilize ultrafast optical-pump terahertz-probe (OPTP) spectroscopy to characterize thickness- and substrate-dependent properties of ruthenium nanofilms. Atomic layer deposition produces ruthenium nanofilms with precisely controlled thicknesses and provides different morphologies of ruthenium islands on different substrates. First, we directly observe a thickness-dependent metal–insulator transition, revealed by a sign change in the OPTP signals near a critical film thickness of about 10 nm. This phase transition originates from the formation of electrical percolation networks of ruthenium islands, providing key information for film-thickness optimization in nanodevice designs. Second, OPTP reveals interfacial thermal transport from ruthenium to various substrates (sapphire, fused silica, and MgO). The thermal dissipation exhibits strong substrate dependence, attributed to the different morphologies of ruthenium islands and quality of the ruthenium-substrate interface. The observed dynamics are reproduced by simulation of spatiotemporal temperature distributions, providing the interface thermal conductance, a key design parameter in the thermal management of nanodevices. This work provides novel insight into the physical properties of ruthenium nanofilms and their dependence on the thickness and the morphology of the films. © 2021 Elsevier B.V.-
dc.language영어-
dc.language.isoen-
dc.publisherElsevier B.V.-
dc.titleMetal-insulator transition and interfacial thermal transport in atomic layer deposited Ru nanofilms characterized by ultrafast terahertz spectroscopy-
dc.typeArticle-
dc.contributor.affiliatedAuthorKim, Woo-Hee-
dc.contributor.affiliatedAuthorSim, Sangwan-
dc.identifier.doi10.1016/j.apsusc.2021.150184-
dc.identifier.scopusid2-s2.0-85107725816-
dc.identifier.wosid000691542200001-
dc.identifier.bibliographicCitationApplied Surface Science, v.563-
dc.relation.isPartOfApplied Surface Science-
dc.citation.titleApplied Surface Science-
dc.citation.volume563-
dc.type.rimsART-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryMaterials Science, Coatings & Films-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.relation.journalWebOfScienceCategoryPhysics, Condensed Matter-
dc.subject.keywordPlusCONDUCTIVITY-
dc.subject.keywordPlusRUTHENIUM-
dc.subject.keywordPlusDYNAMICS-
dc.subject.keywordPlusMGO-
dc.subject.keywordPlusAU-
dc.subject.keywordAuthorAtomic layer deposition-
dc.subject.keywordAuthorInterfacial heat transport-
dc.subject.keywordAuthorInterfacial thermal conductance-
dc.subject.keywordAuthorMetal–insulator transition-
dc.subject.keywordAuthorRuthenium nanofilm-
dc.subject.keywordAuthorUltrafast terahertz spectroscopy-
dc.identifier.urlhttps://www.sciencedirect.com/science/article/pii/S0169433221012605?via%3Dihub-
Files in This Item
Go to Link
Appears in
Collections
COLLEGE OF ENGINEERING SCIENCES > SCHOOL OF ELECTRICAL ENGINEERING > 1. Journal Articles
COLLEGE OF ENGINEERING SCIENCES > DEPARTMENT OF MATERIALS SCIENCE AND CHEMICAL ENGINEERING > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Sim, Sang wan photo

Sim, Sang wan
ERICA 공학대학 (SCHOOL OF ELECTRICAL ENGINEERING)
Read more

Altmetrics

Total Views & Downloads

BROWSE