Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Powder Coatings via Atomic Layer Deposition for Batteries: A Review

Authors
Lee, MinjiAhmad, WaheedKim, Dae WoongKwon, Kyu MoonKwon, Ha YeonJang, Han-BinNoh, Seung-WonKim, Dae-HoZaidi, Syed Jazib AbbasPark, HwiyeolLee, Heung ChanBasit, Muhammad AbdulPark, Tae Joo
Issue Date
Apr-2022
Publisher
American Chemical Society
Citation
Chemistry of Materials, v.34, no.8, pp 3539 - 3587
Pages
49
Indexed
SCIE
SCOPUS
Journal Title
Chemistry of Materials
Volume
34
Number
8
Start Page
3539
End Page
3587
URI
https://scholarworks.bwise.kr/erica/handle/2021.sw.erica/107886
DOI
10.1021/acs.chemmater.1c02944
ISSN
0897-4756
1520-5002
Abstract
Rechargeable batteries have emerged as the most promising energy storage devices in response to continually growing modern demands and are still being researched to attain higher energy densities, structural stability, and longer cycling and calendar life. Owing to the fact that battery electrodes are developed from various types of powders, incorporation of functional nanocoating of suitable materials on powder materials and/or nanosynthesis of active powder constituents have shown promising results regarding the aforementioned challenges associated with modern battery technology. Atomic layer deposition (ALD) has been demonstrated to be highly effective in fabricating inorganic films even at the subnanoscale, not only on flat surfaces but also on individual particles with high conformity, uniformity, and self-limiting growth, thus providing exceptional control over film thickness. Unlike conventional wet-chemical processes, powder ALD offers a unique opportunity to develop nano- and subnanoscale films of various compositions over a variety of substrate particles regardless of their size, morphology, and composition. Proper modifications made by powder ALD process are known to induce improvements in structural stability,electronic and ionic conductivity at the interface, and consequent charge-discharge properties of the batteries. This review comprehensively covers the main strategies and materials used over time to improve the performance of various types of batteries utilizing the powder ALD process.
Files in This Item
Go to Link
Appears in
Collections
COLLEGE OF ENGINEERING SCIENCES > DEPARTMENT OF MATERIALS SCIENCE AND CHEMICAL ENGINEERING > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Park, Tae Joo photo

Park, Tae Joo
ERICA 첨단융합대학 (ERICA 신소재·반도체공학전공)
Read more

Altmetrics

Total Views & Downloads

BROWSE