Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

베이지안 네트워크와 코플라 함수의 결합을 통한 가뭄전이 발생확률의 정량적 분석Quantitative analysis of drought propagation probabilities combining Bayesian networks and copula function

Other Titles
Quantitative analysis of drought propagation probabilities combining Bayesian networks and copula function
Authors
신지예유재희권현한김태웅
Issue Date
Jul-2021
Publisher
한국수자원학회
Keywords
가뭄전이; 베이지안 네트워크; 코플라 함수; 가뭄전이 발생확률; Drought propagation; Bayesian networks; Copula function; Propagation probability
Citation
한국수자원학회 논문집, v.54, no.7, pp 523 - 534
Pages
12
Indexed
KCI
Journal Title
한국수자원학회 논문집
Volume
54
Number
7
Start Page
523
End Page
534
URI
https://scholarworks.bwise.kr/erica/handle/2021.sw.erica/108256
DOI
10.3741/JKWRA.2021.54.7.523
ISSN
1226-6280
2287-6138
Abstract
수문순환 과정에서 강수량의 부족으로 발생된 기상학적 가뭄은 농업 및 수문학적 가뭄으로 전이된다. 기상학적 가뭄과 다르게 농업적 가뭄과 수문학적 가뭄의 발생은 인간 생활에 직접적으로 영향을 미치기 때문에 가뭄의 전이과정을 분석하는 것은 가뭄의 효과적 대비와 대응을 위하여 필요한 일이다. 본 연구에서는 관측된 강수량과 수문모형으로 모의된 자연유출량 자료를 바탕으로 기상학적 가뭄과 수문학적 가뭄을 정의하고, 베이지안 네트워크 모형을 활용하여 기상학적 가뭄과 수문학적 가뭄 간의 전이 관계를 확률론적으로 분석하였다. 베이지안 네트워크의 결합확률을 산정하기 위하여 코플라함수를 활용하였다. 분석 결과, 기상학적 가뭄이 보통가뭄 상황에서는 수문학적 가뭄으로 전이될 확률은 0.41 ~ 0.63, 기상학적 가뭄이 극심한 경우에는 수문학적 가뭄으로 전이될 확률은 0.83 ~ 0.98이었다. 즉, 기상학적 가뭄이 심화됨에 따라 수문학적 가뭄으로 전이될 확률은 증가되었다. 계절별로는 가을에 가뭄전이 발생확률이 0.71 ~ 0.89로 가장 높으며, 겨울에는 0.41 ~ 0.62의 값으로 낮게 산정되었다. 결론적으로 여름에서 가을까지 기상학적 가뭄 심도가 심화됨에 따라서 수문학적 가뭄으로의 전이 확률이 높아지며, 해당 시기 동안 가뭄에 적절한 대응을 수행하면 가뭄의 예방이 가능할 것이다.
Meteorological drought originates from a precipitation deficiency and propagates to agricultural and hydrological droughts through the hydrological cycle. Comparing with the meteorological drought, agricultural and hydrological droughts have more direct impacts on human society. Thus, understanding how meteorological drought evolves to agricultural and hydrological droughts is necessary for efficient drought preparedness and response. In this study, meteorological and hydrological droughts were defined based on the observed precipitation and the synthesized streamflow by the land surface model. The Bayesian network model was applied for probabilistic analysis of the propagation relationship between meteorological and hydrological droughts. The copula function was used to estimate the joint probability in the Bayesian network. The results indicated that the propagation probabilities from the moderate and extreme meteorological droughts were ranged from 0.41 to 0.63 and from 0.83 to 0.98, respectively. In addition, the propagation probabilities were highest in autumn (0.71 ~ 0.89) and lowest in winter (0.41 ~ 0.62). The propagation probability increases as the meteorological drought evolved from summer to autumn, and the severe hydrological drought could be prevented by appropriate mitigation during that time.
Files in This Item
Go to Link
Appears in
Collections
COLLEGE OF ENGINEERING SCIENCES > DEPARTMENT OF CIVIL AND ENVIRONMENTAL ENGINEERING > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Kim, Tae Woong photo

Kim, Tae Woong
ERICA 공학대학 (DEPARTMENT OF CIVIL AND ENVIRONMENTAL ENGINEERING)
Read more

Altmetrics

Total Views & Downloads

BROWSE