Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

State of charge dependent ordered and disordered phases in a Li[Ni1/3Co1/3Mn1/3]O2 cathode materialopen access

Authors
Lee, Chi HoJun, ByeongsunLee, Seung CheolLee, Sang Uck
Issue Date
Jun-2021
Publisher
ROYAL SOC CHEMISTRY
Citation
Materials Advances, v.2, no.12, pp 3965 - 3970
Pages
6
Indexed
SCIE
SCOPUS
Journal Title
Materials Advances
Volume
2
Number
12
Start Page
3965
End Page
3970
URI
https://scholarworks.bwise.kr/erica/handle/2021.sw.erica/110311
DOI
10.1039/d1ma00289a
ISSN
2633-5409
2633-5409
Abstract
We systematically investigated the structural phase transition of a Li[Ni1/3Co1/3Mn1/3]O2 (NCM) cathode material depending on the state of charge (SOC) using cluster expansion Monte Carlo simulation (CE-MCS) combined with density functional theory (DFT). Considering the charging/discharging process involving lithium intercalation/deintercalation, the oxidation state of transition metal (TM) cations varies with the SOC, resulting in a TM arrangement shift to a thermodynamically favorable NCM structure. Our results demonstrate that the phase transition from disordered to ordered happens at a low SOC with a high TM oxidation state, and that the phase transition is initiated by TM pop-up from the TM layer to the Li layer. Ni migration plays an especially fundamental role in the phase transition with a diffusion energy barrier comparable to that of Li ions. Furthermore, based on a thorough understanding of the structural phase transition, we propose cation dopants (Zr, Ti and V) which inhibit the Ni pop-up as an initiating step of the phase transition by enhancing the chemical bonding of Ni ions in the NCM structure, thereby preventing the phase transition from causing undesirable structural degradation and severe capacity fading in NCM. Our theoretical investigations will provide insights into the structural phase transition mechanism and the design of new cathode materials for lithium ion batteries (LIBs).
Files in This Item
Appears in
Collections
COLLEGE OF SCIENCE AND CONVERGENCE TECHNOLOGY > DEPARTMENT OF CHEMICAL AND MOLECULAR ENGINEERING > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE