Dispersion Stability of 14 Manufactured Nanomaterials for Ecotoxicity Tests Using Raphidocelis subcapitataopen access
- Authors
- Lee, Seung-Hun; Jung, Kiyoon; Yoo, Won Cheol; Chung, Jinwook; Lee, Yong-Woo
- Issue Date
- Jun-2022
- Publisher
- Multidisciplinary Digital Publishing Institute (MDPI)
- Keywords
- dispersion; ecotoxicity; manufactured nanomaterial; Raphidocelis subcapitata
- Citation
- International Journal of Environmental Research and Public Health, v.19, no.12, pp 1 - 13
- Pages
- 13
- Indexed
- SCIE
SSCI
SCOPUS
- Journal Title
- International Journal of Environmental Research and Public Health
- Volume
- 19
- Number
- 12
- Start Page
- 1
- End Page
- 13
- URI
- https://scholarworks.bwise.kr/erica/handle/2021.sw.erica/111081
- DOI
- 10.3390/ijerph19127140
- ISSN
- 1661-7827
1660-4601
- Abstract
- The development of nanotechnology has increased concerns about the exposure of ecosystems to manufactured nanomaterials, the toxicities of which are now being researched. However, when manufactured nanomaterials are mixed with algae in a culture medium for ecotoxicity tests, the results are vulnerable to distortion by an agglomeration phenomenon. Here, we describe a dispersion method commonly applicable to ecotoxicity tests for the 14 types of manufactured nanomaterials specified by the Organisation of Economic Co-operation and Development's Sponsorship Programme, namely aluminum oxide (Al2O3), carbon black, single-walled carbon nanotubes (SWCNTs), multi-walled carbon nanotubes (MWCNTs), cerium oxide (CeO2), dendrimers, fullerene, gold (Au), iron (Fe), nanoclays, silver (Ag), silicon dioxide (SiO2), titanium dioxide (TiO2), and zinc oxide (ZnO). The type of dispersant, sonication time, and stirring speed were carefully considered. Consequently, 1500 mg/L of gum arabic was selected as a dispersant; for sonication time, 1 h was selected for dendrimers, 2 h for SiO2, 24 h for SWCNTs and Au, and 4 h for the other nanomaterials. Dispersion stability was achieved for all materials at a stirring speed of 200 rpm. To verify the effect of this dispersion method on ecotoxicity tests, toxicity was measured through cell counts for SWCNTs and TiO2 using Raphidocelis subcapitata. The half-maximal effective concentrations (EC50) were 18.0 +/- 4.6 mg/L for SWCNTs and 316.6 +/- 64.7 mg/L for TiO2.
- Files in This Item
-
- Appears in
Collections - COLLEGE OF SCIENCE AND CONVERGENCE TECHNOLOGY > DEPARTMENT OF CHEMICAL AND MOLECULAR ENGINEERING > 1. Journal Articles

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.