Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Noble metal single-atoms for lithium-ion batteries: A booster for ultrafast charging/discharging in carbon electrodes

Authors
Kim, Hee-eunJang, SeohyeonLim, HansolChung, WoowonNam, InhoBang, Jin Ho
Issue Date
Jul-2023
Publisher
Elsevier BV
Keywords
Li -ion batteries; Anode; Carbon; Single -atom; Noble metal
Citation
Applied Surface Science, v.624, pp 1 - 10
Pages
10
Indexed
SCIE
SCOPUS
Journal Title
Applied Surface Science
Volume
624
Start Page
1
End Page
10
URI
https://scholarworks.bwise.kr/erica/handle/2021.sw.erica/113292
DOI
10.1016/j.apsusc.2023.157161
ISSN
0169-4332
1873-5584
Abstract
Despite the popularity of single metal atoms (SMAs) in many applications, their utilization in lithium-ion bat-teries (LIBs) has seldom been explored to date. To examine the potential benefits of SMAs in LIBs, we prepared porous carbons where one of three different noble metals (Au, Ag, and Pt) was embedded in the form of SMAs via a simple galvanic replacement reaction. When exploited as an anode material for LIBs, these SMA-incorporated carbons showed an enhanced capacity compared to control samples that had no SMAs in the carbon network. Our investigation also revealed that the effect of SMAs on the LIB performance depends on the types of metal incorporated, among which Ag SMAs stand out in terms of rate capability and long-term stability. In particular, the Ag SMA-embedded carbon exhibited superior performance even at ultrafast charging/discharging rates, highlighting the unprecedented effects of SMAs as capacity boosters. The reasons for this newly found SMA effect are attributed to the lower interfacial resistances that are induced by delicate modulation of the electronic structure of carbon in the presence of Ag SMAs. This is the first report to harness SMAs for LIBs, which we speculate will open a new frontier in the applications of SMAs.
Files in This Item
Go to Link
Appears in
Collections
COLLEGE OF SCIENCE AND CONVERGENCE TECHNOLOGY > DEPARTMENT OF CHEMICAL AND MOLECULAR ENGINEERING > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Bang, Jin Ho photo

Bang, Jin Ho
ERICA 공학대학 (ERICA 에너지바이오학과)
Read more

Altmetrics

Total Views & Downloads

BROWSE