A strategy for wafer-scale crystalline MoS2 thin films with controlled morphology using pulsed metal-organic chemical vapor deposition at low temperature
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Choi, Jeong-Hun | - |
dc.contributor.author | Ha, Min-Ji | - |
dc.contributor.author | Park, Jae Chan | - |
dc.contributor.author | Park, Tae Joo | - |
dc.contributor.author | Kim, Woo-Hee | - |
dc.contributor.author | Lee, Myoung-Jae | - |
dc.contributor.author | Ahn, Ji-Hoon | - |
dc.date.accessioned | 2023-07-05T06:31:07Z | - |
dc.date.available | 2023-07-05T06:31:07Z | - |
dc.date.issued | 2022-02 | - |
dc.identifier.issn | 2196-7350 | - |
dc.identifier.issn | 2196-7350 | - |
dc.identifier.uri | https://scholarworks.bwise.kr/erica/handle/2021.sw.erica/113554 | - |
dc.description.abstract | 2D semiconductor materials with layered crystal structures have attracted great interest as promising candidates for electronic, optoelectronic, and sensor applications due to their unique and superior characteristics. However, a large-area synthesis process for various applications and practical mass production is still lacking. In particular, there is a limitation in that a high process temperature and a very long process time are required to deposit a crystallized 2D material on a large area. Herein, pulsed metal-organic chemical vapor deposition (p-MOCVD) is proposed for the growth of wafer-scale crystalline MoS2 thin films to overcome the existing limitations. In the p-MOCVD process, precursors are repeatedly injected at regular intervals to enhance the migration of precursors on the surface. As a result, crystalline MoS2 is successfully synthesized at the lowest temperature (350 degrees C) reported so far in a very short process time of 550 s. In addition, it is found that the horizontal and vertical growth modes of MoS2 can be effectively controlled by adjusting key process parameters. Finally, various applications are presented by demonstrating the photodetector (detectivity = 18.1 x 10(6) at light power of 1 mW) and chemical sensor (response = 38% at 100 ppm of NO2 gas) devices. | - |
dc.format.extent | 11 | - |
dc.language | 영어 | - |
dc.language.iso | ENG | - |
dc.publisher | John Wiley and Sons Ltd | - |
dc.title | A strategy for wafer-scale crystalline MoS2 thin films with controlled morphology using pulsed metal-organic chemical vapor deposition at low temperature | - |
dc.type | Article | - |
dc.publisher.location | 미국 | - |
dc.identifier.doi | 10.1002/admi.202101785 | - |
dc.identifier.scopusid | 2-s2.0-85121417101 | - |
dc.identifier.wosid | 000731205600001 | - |
dc.identifier.bibliographicCitation | Advanced Materials Interfaces, v.9, no.4, pp 1 - 11 | - |
dc.citation.title | Advanced Materials Interfaces | - |
dc.citation.volume | 9 | - |
dc.citation.number | 4 | - |
dc.citation.startPage | 1 | - |
dc.citation.endPage | 11 | - |
dc.type.docType | 정기학술지(Article(Perspective Article포함)) | - |
dc.description.isOpenAccess | N | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.relation.journalResearchArea | Chemistry | - |
dc.relation.journalResearchArea | Materials Science | - |
dc.relation.journalWebOfScienceCategory | Chemistry, Multidisciplinary | - |
dc.relation.journalWebOfScienceCategory | Materials Science, Multidisciplinary | - |
dc.subject.keywordPlus | SINGLE-LAYER MOS2 | - |
dc.subject.keywordPlus | GAS-ADSORPTION | - |
dc.subject.keywordPlus | GROWTH | - |
dc.subject.keywordPlus | PHOTOLUMINESCENCE | - |
dc.subject.keywordPlus | PHOTODETECTOR | - |
dc.subject.keywordPlus | TRANSISTORS | - |
dc.subject.keywordPlus | MECHANISMS | - |
dc.subject.keywordPlus | NUCLEATION | - |
dc.subject.keywordPlus | NANOSHEETS | - |
dc.subject.keywordPlus | MONOLAYER | - |
dc.subject.keywordAuthor | low temperature film growth | - |
dc.subject.keywordAuthor | molybdenum disulfides | - |
dc.subject.keywordAuthor | morphology control in MoS | - |
dc.subject.keywordAuthor | (2) thin films | - |
dc.subject.keywordAuthor | pulsed metal-organic chemical vapor deposition | - |
dc.subject.keywordAuthor | transition metal dichalcogenides | - |
dc.identifier.url | https://onlinelibrary.wiley.com/doi/full/10.1002/admi.202101785 | - |
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.
55 Hanyangdeahak-ro, Sangnok-gu, Ansan, Gyeonggi-do, 15588, Korea+82-31-400-4269 sweetbrain@hanyang.ac.kr
COPYRIGHT © 2021 HANYANG UNIVERSITY. ALL RIGHTS RESERVED.
Certain data included herein are derived from the © Web of Science of Clarivate Analytics. All rights reserved.
You may not copy or re-distribute this material in whole or in part without the prior written consent of Clarivate Analytics.