Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Programmable Locomotion Mechanisms of Nanowires with Semihard Magnetic Properties Near a Surface Boundary

Full metadata record
DC Field Value Language
dc.contributor.authorJang, Bumjin-
dc.contributor.authorHong, Ayoung-
dc.contributor.authorAlcantara, Carlos-
dc.contributor.authorChatzipirpiridis, George-
dc.contributor.authorMartí, Xavier-
dc.contributor.authorPellicer, Eva-
dc.contributor.authorSort, Jordi-
dc.contributor.authorHarduf, Yuval-
dc.contributor.authorOr, Yizhar-
dc.contributor.authorNelson, Bradley J.-
dc.contributor.authorPané, Salvador-
dc.date.accessioned2023-08-16T08:32:23Z-
dc.date.available2023-08-16T08:32:23Z-
dc.date.issued2019-01-
dc.identifier.issn1944-8244-
dc.identifier.issn1944-8252-
dc.identifier.urihttps://scholarworks.bwise.kr/erica/handle/2021.sw.erica/114372-
dc.description.abstractWe report on the simplest magnetic nanowire-based surface walker that is able to change its propulsion mechanism near a surface boundary as a function of the applied rotating magnetic field frequency. The nanowires are made of CoPt alloy with semihard magnetic properties synthesized by means of template-assisted galvanostatic electrodeposition. The semihard magnetic behavior of the nanowires allows for programming their alignment with an applied magnetic field as they can retain their magnetization direction after premagnetizing them. By engineering the macroscopic magnetization, the nanowires' speed and locomotion mechanism are set to tumbling, precession, or rolling depending on the frequency of an applied rotating magnetic field. Also, we present a mathematical analysis that predicts the translational speed of the nanowire near the surface, showing a very good agreement with experimental results. Interestingly, the maximal speed is obtained at an optimal frequency (∼10 Hz), which is far below the theoretical step-out frequency (∼345 Hz). Finally, vortices are found by tracking polystyrene microbeads, trapped around the CoPt nanowire, when they are propelled by precession and rolling motion. © 2018 American Chemical Society.-
dc.format.extent10-
dc.language영어-
dc.language.isoENG-
dc.publisherAmerican Chemical Society-
dc.titleProgrammable Locomotion Mechanisms of Nanowires with Semihard Magnetic Properties Near a Surface Boundary-
dc.typeArticle-
dc.publisher.location미국-
dc.identifier.doi10.1021/acsami.8b16907-
dc.identifier.scopusid2-s2.0-85060056839-
dc.identifier.wosid000457067300075-
dc.identifier.bibliographicCitationACS Applied Materials & Interfaces, v.11, no.3, pp 3214 - 3223-
dc.citation.titleACS Applied Materials & Interfaces-
dc.citation.volume11-
dc.citation.number3-
dc.citation.startPage3214-
dc.citation.endPage3223-
dc.type.docType정기학술지(Article(Perspective Article포함))-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClasssci-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.subject.keywordPlusCONTROLLED PROPULSION-
dc.subject.keywordPlusMOTION-
dc.subject.keywordAuthorboundary effect-
dc.subject.keywordAuthorCoPt nanowires-
dc.subject.keywordAuthormotion transition-
dc.subject.keywordAuthornanopropulsion-
dc.subject.keywordAuthorsemihard magnetic properties-
dc.identifier.urlhttps://pubs.acs.org/doi/10.1021/acsami.8b16907?src=getftr-
Files in This Item
Go to Link
Appears in
Collections
COLLEGE OF ENGINEERING SCIENCES > DEPARTMENT OF ROBOT ENGINEERING > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Jang, Bumjin photo

Jang, Bumjin
ERICA 공학대학 (DEPARTMENT OF ROBOT ENGINEERING)
Read more

Altmetrics

Total Views & Downloads

BROWSE