Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Device-Algorithm Co-Optimization for an On-Chip Trainable Capacitor-Based Synaptic Device with IGZO TFT and Retention-Centric Tiki-Taka Algorithm

Full metadata record
DC Field Value Language
dc.contributor.authorWon, Jongun-
dc.contributor.authorKang, Jaehyeon-
dc.contributor.authorHong, Sangjun-
dc.contributor.authorHan, Narae-
dc.contributor.authorKang, Minseung-
dc.contributor.authorPark, Yeaji-
dc.contributor.authorRoh, Youngchae-
dc.contributor.authorSeo, Hyeong Jun-
dc.contributor.authorJoe, Changhoon-
dc.contributor.authorCho, Ung-
dc.contributor.authorKang, Minil-
dc.contributor.authorUm, Minseong-
dc.contributor.authorLee, Kwang-Hee-
dc.contributor.authorYang, Jee-Eun-
dc.contributor.authorJung, Moonil-
dc.contributor.authorLee, Hyung-Min-
dc.contributor.authorOh, Saeroonter-
dc.contributor.authorKim, Sangwook-
dc.contributor.authorKim, Sangbum-
dc.date.accessioned2023-08-22T01:30:03Z-
dc.date.available2023-08-22T01:30:03Z-
dc.date.issued2023-10-
dc.identifier.issn2198-3844-
dc.identifier.issn2198-3844-
dc.identifier.urihttps://scholarworks.bwise.kr/erica/handle/2021.sw.erica/114391-
dc.description.abstractAnalog in-memory computing synaptic devices are widely studied for efficient implementation of deep learning. However, synaptic devices based on resistive memory have difficulties implementing on-chip training due to the lack of means to control the amount of resistance change and large device variations. To overcome these shortcomings, silicon complementary metal-oxide semiconductor (Si-CMOS) and capacitor-based charge storage synapses are proposed, but it is difficult to obtain sufficient retention time due to Si-CMOS leakage currents, resulting in a deterioration of training accuracy. Here, a novel 6T1C synaptic device using only n-type indium gaIlium zinc oxide thin film transistor (IGZO TFT) with low leakage current and a capacitor is proposed, allowing not only linear and symmetric weight update but also sufficient retention time and parallel on-chip training operations. In addition, an efficient and realistic training algorithm to compensate for any remaining device non-idealities such as drifting references and long-term retention loss is proposed, demonstrating the importance of device-algorithm co-optimization. © 2023 The Authors. Advanced Science published by Wiley-VCH GmbH.-
dc.format.extent11-
dc.language영어-
dc.language.isoENG-
dc.publisherWiley-VCH Verlag-
dc.titleDevice-Algorithm Co-Optimization for an On-Chip Trainable Capacitor-Based Synaptic Device with IGZO TFT and Retention-Centric Tiki-Taka Algorithm-
dc.typeArticle-
dc.publisher.location미국-
dc.identifier.doi10.1002/advs.202303018-
dc.identifier.scopusid2-s2.0-85167424909-
dc.identifier.wosid001044770200001-
dc.identifier.bibliographicCitationAdvanced Science, v.10, no.29, pp 1 - 11-
dc.citation.titleAdvanced Science-
dc.citation.volume10-
dc.citation.number29-
dc.citation.startPage1-
dc.citation.endPage11-
dc.type.docTypeArticle-
dc.description.isOpenAccessY-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalWebOfScienceCategoryChemistry, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.subject.keywordPlusMEMORY-
dc.subject.keywordPlusOXIDE-
dc.subject.keywordPlusACCURACY-
dc.subject.keywordAuthordevice-algorithm co-optimization-
dc.subject.keywordAuthorin-memory computing-
dc.subject.keywordAuthorindium gallium zinc oxide thin film transistor (IGZO TFT)-
dc.subject.keywordAuthorneuromorphic-
dc.subject.keywordAuthortiki-taka algorithm-
dc.identifier.urlhttps://www.scopus.com/record/display.uri?eid=2-s2.0-85167424909&origin=inward&txGid=6cea98e47dd3e39c219a64730b9c08af-
Files in This Item
Go to Link
Appears in
Collections
COLLEGE OF ENGINEERING SCIENCES > SCHOOL OF ELECTRICAL ENGINEERING > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE