Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

An eco-friendly chitosan-diethylaminoethyl cellulose composite: In-depth analysis of lead (II) and arsenic(V) decontamination from water with molecular perspectives

Authors
Majdoubi, HichamEL Kaim Billah, RachidAminul Islam, Md.Nazal, Mazen K.Shekhawat, AnitaAlrashdi, Awad A.Alberto Lopez-Maldonado, EduardoSoulaimani, AzizTamraoui, YoussefJugade, RavinLgaz, Hassane
Issue Date
Oct-2023
Publisher
Elsevier B.V.
Keywords
Adsorption; Arsenic(V); Chitosan; Diethylaminoethyl cellulose; Lead(II); Molecular Dynamic Simulation
Citation
Journal of Molecular Liquids, v.387, pp 1 - 15
Pages
15
Indexed
SCIE
SCOPUS
Journal Title
Journal of Molecular Liquids
Volume
387
Start Page
1
End Page
15
URI
https://scholarworks.bwise.kr/erica/handle/2021.sw.erica/114413
DOI
10.1016/j.molliq.2023.122680
ISSN
0167-7322
1873-3166
Abstract
Water pollution from heavy metal ions, such as lead (II) and arsenic (V), is a widespread problem that has spurred researchers to look for efficient, environmentally acceptable treatment methods. In this context, the present study explores the potentiality of a novel, low-cost biosorbent material for the efficient removal of these toxic contaminants. A chitosan crosslinked@diethylaminoethyl cellulose (Cs@DEAE-C) composite was synthesized by crosslinking chitosan and diethylaminoethyl cellulose (DEAE-C) and employed to adsorb Pb(II) and As(V) from water. The monolayer adsorption capacity was found to be 218.71 mg/g for Pb(II) and 41.98 mg/g for As(V), respectively while the uptake process involved chemisorption. The adsorption capability of Cs@DEAE-C for As(V) and Pb(II) was decreased when phosphate and nitrate ions were present. Desorption studies demonstrated that Cs@DEAE-C effectively removed As(V) and Pb(II) for up to five adsorption–desorption cycles. Uncross-linked carbonyl (C = O) and hydroxyl (–OH) groups were found to be the main adsorptive sites for Pb(II) uptake, whereas uncross-linked hydroxyl (–OH) and –NH2 groups were found to be crucial for As(V) absorption. The self-diffusion coefficient values from molecular dynamics (MD) simulation revealed that electrostatic interactions hinder the mobility of metal ions limiting their diffusion ability. This study highlights the efficiency of the low-cost chitosan composite for contaminant removal and suggests its potential applicability in treating real wastewater for other pollutants. Further research could focus on optimizing the synthesis process and exploring the composite's efficacy for additional contaminants. © 2023 Elsevier B.V.
Files in This Item
Go to Link
Appears in
Collections
ETC > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Lgaz, Hassane photo

Lgaz, Hassane
ERICA부총장 한양인재개발원 (ERICA 창의융합교육원)
Read more

Altmetrics

Total Views & Downloads

BROWSE