Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Validation of reference genes for quantitative real-time PCR in chemical exposed and at different age’s brackish water flea Diaphanosoma celebensisopen access

Authors
Lee, Young-MiCho, HayoungKim, Ryeo-OkIn, SoyeonKim, Se-JooWon, Eun-Ji
Issue Date
Dec-2021
Publisher
Nature Publishing Group
Citation
Scientific Reports, v.11, no.1, pp.1 - 12
Indexed
SCIE
SCOPUS
Journal Title
Scientific Reports
Volume
11
Number
1
Start Page
1
End Page
12
URI
https://scholarworks.bwise.kr/erica/handle/2021.sw.erica/114793
DOI
10.1038/s41598-021-03098-x
ISSN
20452322
Abstract
Real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR), a primary approach for evaluating gene expression, requires an appropriate normalization strategy to confirm relative gene expression levels by comparison, and rule out variations that might occur in analytical procedures. The best option is to use a reference gene whose expression level is stable across various experimental conditions to compare the mRNA levels of a target gene. However, there is limited information on how the reference gene is differentially expressed at different ages (growth) in small invertebrates with notable changes such as molting. In this study, expression profiles of nine candidate reference genes from the brackish water flea, Diaphanosoma celebensis, were evaluated under diverse exposure to toxicants and according to growth. As a result, four different algorithms showed similar stabilities of genes for chemical exposures in the case of limited conditions using the same developmental stage (H2A was stable, whereas Act was fairly unstable in adults), while the results according to age showed a significantly different pattern in suite of candidate reference genes. This affected the results of genes EcRA and GST, which are involved in development and detoxification mechanisms, respectively. Our finding is the first step towards establishing a standardized real-time qRT-PCR analysis of this environmentally important invertebrate that has potential for aquatic ecotoxicology, particularly in estuarine environments.
Files in This Item
Go to Link
Appears in
Collections
ETC > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Won, Eun Ji photo

Won, Eun Ji
ERICA부총장 한양인재개발원 (ERICA 창의융합교육원)
Read more

Altmetrics

Total Views & Downloads

BROWSE