Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Formulation and Evaluation of a Self-Microemulsifying Drug Delivery System of Raloxifene with Improved Solubility and Oral Bioavailabilityopen access

Authors
Ansari, Muhammad MohsinVo, Dang-KhoaChoi, Ho-IkRyu, Jeong-SuBae, YumiBukhari, Nadeem IrfanZeb, AlamKim, Jin-KiMaeng, Han-Joo
Issue Date
Aug-2023
Publisher
Multidisciplinary Digital Publishing Institute (MDPI)
Keywords
BCS class II; dissolution; oral bioavailability; raloxifene hydrochloride; SMEDDS; solubility
Citation
Pharmaceutics, v.15, no.8, pp 1 - 20
Pages
20
Indexed
SCIE
SCOPUS
Journal Title
Pharmaceutics
Volume
15
Number
8
Start Page
1
End Page
20
URI
https://scholarworks.bwise.kr/erica/handle/2021.sw.erica/115118
DOI
10.3390/pharmaceutics15082073
ISSN
1999-4923
1999-4923
Abstract
Poor aqueous solubility and dissolution limit the oral bioavailability of Biopharmaceutics Classification System (BCS) class II drugs. In this study, we aimed to improve the aqueous solubility and oral bioavailability of raloxifene hydrochloride (RLX), a BCS class II drug, using a self-microemulsifying drug delivery system (SMEDDS). Based on the solubilities of RLX, Capryol 90, Tween 80/Labrasol ALF, and polyethylene glycol 400 (PEG-400) were selected as the oil, surfactant mixture, and cosurfactant, respectively. Pseudo-ternary phase diagrams were constructed to determine the optimal composition (Capryol 90/Tween 80/Labrasol ALF/PEG-400 in 150/478.1/159.4/212.5 volume ratio) for RLX-SMEDDS with a small droplet size (147.1 nm) and stable microemulsification (PDI: 0.227). Differential scanning calorimetry and powder X-ray diffraction of lyophilized RLX-SMEDDS revealed the loss of crystallinity, suggesting a molecularly dissolved or amorphous state of RLX in the SMEDDS formulation. Moreover, RLX-SMEDDS exhibited significantly higher saturation solubility and dissolution rate in water, simulated gastric fluid (pH 1.2), and simulated intestinal fluid (pH 6.8) than RLX powder. Additionally, oral administration of RLX-SMEDDS to female rats resulted in 1.94- and 1.80-fold higher area under the curve and maximum plasma concentration, respectively, than the RLX dispersion. Collectively, our findings suggest SMEDDS is a promising oral formulation to enhance the therapeutic efficacy of RLX. © 2023 by the authors.
Files in This Item
Go to Link
Appears in
Collections
COLLEGE OF PHARMACY > DEPARTMENT OF PHARMACY > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Kim, Jin-Ki photo

Kim, Jin-Ki
COLLEGE OF PHARMACY (DEPARTMENT OF PHARMACY)
Read more

Altmetrics

Total Views & Downloads

BROWSE