Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Evolutionary Computation for Expensive Optimization: A Survey

Authors
Li, Jian-YuZhan, Zhi-HuiZHANG, Jun
Issue Date
Feb-2022
Publisher
Springer Verlag
Keywords
Expensive optimization probleme; volutionary computation; evolutionary algorithm; swarm intelligence; particle swarm optimization; differential evolution
Citation
International Journal of Automation and Computing, v.19, no.1, pp 3 - 23
Pages
21
Indexed
SCOPUS
ESCI
Journal Title
International Journal of Automation and Computing
Volume
19
Number
1
Start Page
3
End Page
23
URI
https://scholarworks.bwise.kr/erica/handle/2021.sw.erica/115759
DOI
10.1007/s11633-022-1317-4
ISSN
1476-8186
Abstract
Expensive optimization problem (EOP) widely exists in various significant real-world applications. However, EOP requires expensive or even unaffordable costs for evaluating candidate solutions, which is expensive for the algorithm to find a satisfactory solution. Moreover, due to the fast-growing application demands in the economy and society, such as the emergence of the smart cities, the internet of things, and the big data era, solving EOP more efficiently has become increasingly essential in various fields, which poses great challenges on the problem-solving ability of optimization approach for EOP. Among various optimization approaches, evolutionary computation (EC) is a promising global optimization tool widely used for solving EOP efficiently in the past decades. Given the fruitful advancements of EC for EOP, it is essential to review these advancements in order to synthesize and give previous research experiences and references to aid the development of relevant research fields and real-world applications. Motivated by this, this paper aims to provide a comprehensive survey to show why and how EC can solve EOP efficiently. For this aim, this paper firstly analyzes the total optimization cost of EC in solving EOP. Then, based on the analysis, three promising research directions are pointed out for solving EOP, which are problem approximation and substitution, algorithm design and enhancement, and parallel and distributed computation. Note that, to the best of our knowledge, this paper is the first that outlines the possible directions for efficiently solving EOP by analyzing the total expensive cost. Based on this, existing works are reviewed comprehensively via a taxonomy with four parts, including the above three research directions and the real-world application part. Moreover, some future research directions are also discussed in this paper. It is believed that such a survey can attract attention, encourage discussions, and stimulate new EC research ideas for solving EOP and related real-world applications more efficiently.
Files in This Item
Go to Link
Appears in
Collections
COLLEGE OF ENGINEERING SCIENCES > SCHOOL OF ELECTRICAL ENGINEERING > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher ZHANG, Jun photo

ZHANG, Jun
ERICA 공학대학 (SCHOOL OF ELECTRICAL ENGINEERING)
Read more

Altmetrics

Total Views & Downloads

BROWSE