Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Optimizing the Vehicle Routing Problem With Time Windows: A Discrete Particle Swarm Optimization Approach

Authors
Gong, Yue-JiaoZhang, JunLiu, OuHuang, Rui-ZhangChung, Henry Shu-HungShi, Yu-Hui
Issue Date
Mar-2012
Publisher
Institute of Electrical and Electronics Engineers
Keywords
Combinatorial optimization problems (COPs); set-based particle swarm optimization (S-PSO); vehicle routing problem with time windows (VRPTW)
Citation
IEEE Transactions on Systems, Man and Cybernetics Part C: Applications and Reviews, v.42, no.2, pp 254 - 267
Pages
14
Indexed
SCI
SCIE
SCOPUS
Journal Title
IEEE Transactions on Systems, Man and Cybernetics Part C: Applications and Reviews
Volume
42
Number
2
Start Page
254
End Page
267
URI
https://scholarworks.bwise.kr/erica/handle/2021.sw.erica/116052
DOI
10.1109/TSMCC.2011.2148712
ISSN
1094-6977
Abstract
Vehicle routing problem with time windows (VRPTW) is a well-known NP-hard combinatorial optimization problem that is crucial for transportation and logistics systems. Even though the particle swarm optimization (PSO) algorithm is originally designed to solve continuous optimization problems, in this paper, we propose a set-based PSO to solve the discrete combinatorial optimization problem VRPTW (S-PSO-VRPTW). The general method of the S-PSO-VRPTW is to select an optimal subset out of the universal set by the use of the PSO framework. As the VRPTW can be defined as selecting an optimal subgraph out of the complete graph, the problem can be naturally solved by the proposed algorithm. The proposed S-PSO-VRPTW treats the discrete search space as an arc set of the complete graph that is defined by the nodes in the VRPTW and regards the candidate solution as a subset of arcs. Accordingly, the operators in the algorithm are defined on the set instead of the arithmetic operators in the original PSO algorithm. Besides, the process of position updating in the algorithm is constructive, during which the constraints of the VRPTW are considered and a time-oriented, nearest neighbor heuristic is used. A normalization method is introduced to handle the primary and secondary objectives of the VRPTW. The proposed S-PSO-VRPTW is tested on Solomon's benchmarks. Simulation results and comparisons illustrate the effectiveness and efficiency of the algorithm.
Files in This Item
Go to Link
Appears in
Collections
COLLEGE OF ENGINEERING SCIENCES > SCHOOL OF ELECTRICAL ENGINEERING > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher ZHANG, Jun photo

ZHANG, Jun
ERICA 공학대학 (SCHOOL OF ELECTRICAL ENGINEERING)
Read more

Altmetrics

Total Views & Downloads

BROWSE