Evolutionary Computation Meets Machine Learning: A Survey
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Zhang, Jun | - |
dc.contributor.author | Zhan, Zhi-hui | - |
dc.contributor.author | Lin, Ying | - |
dc.contributor.author | Chen, Ni | - |
dc.contributor.author | Gong, Yue-jiao | - |
dc.contributor.author | Zhong, Jing-hui | - |
dc.contributor.author | Chung, Henry S. H. | - |
dc.contributor.author | Li, Yun | - |
dc.contributor.author | Shi, Yu-hui | - |
dc.date.accessioned | 2023-12-08T10:29:21Z | - |
dc.date.available | 2023-12-08T10:29:21Z | - |
dc.date.issued | 2011-11 | - |
dc.identifier.issn | 1556-603X | - |
dc.identifier.issn | 1556-6048 | - |
dc.identifier.uri | https://scholarworks.bwise.kr/erica/handle/2021.sw.erica/116116 | - |
dc.description.abstract | Evolutionary computation (EC) is a kind of optimization methodology inspired by the mechanisms of biological evolution and behaviors of living organisms. In the literature, the terminology evolutionary algorithms is frequently treated the same as EC. This article focuses on making a survey of researches based on using ML techniques to enhance EC algorithms. In the framework of an ML-technique enhanced-EC algorithm (MLEC), the main idea is that the EC algorithm has stored ample data about the search space, problem features, and population information during the iterative search process, thus the ML technique is helpful in analyzing these data for enhancing the search performance. The paper presents a survey of five categories: ML for population initialization, ML for fitness evaluation and selection, ML for population reproduction and variation, ML for algorithm adaptation, and ML for local search. | - |
dc.format.extent | 8 | - |
dc.language | 영어 | - |
dc.language.iso | ENG | - |
dc.publisher | Institute of Electrical and Electronics Engineers | - |
dc.title | Evolutionary Computation Meets Machine Learning: A Survey | - |
dc.type | Article | - |
dc.publisher.location | 미국 | - |
dc.identifier.doi | 10.1109/MCI.2011.942584 | - |
dc.identifier.scopusid | 2-s2.0-80054958010 | - |
dc.identifier.wosid | 000296102000007 | - |
dc.identifier.bibliographicCitation | IEEE Computational Intelligence Magazine, v.6, no.4, pp 68 - 75 | - |
dc.citation.title | IEEE Computational Intelligence Magazine | - |
dc.citation.volume | 6 | - |
dc.citation.number | 4 | - |
dc.citation.startPage | 68 | - |
dc.citation.endPage | 75 | - |
dc.type.docType | Review | - |
dc.description.isOpenAccess | N | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.relation.journalResearchArea | Computer Science | - |
dc.relation.journalWebOfScienceCategory | Computer Science, Artificial Intelligence | - |
dc.subject.keywordPlus | GENETIC ALGORITHM | - |
dc.subject.keywordPlus | OPTIMIZATION | - |
dc.subject.keywordPlus | APPROXIMATION | - |
dc.subject.keywordPlus | CROSSOVER | - |
dc.subject.keywordPlus | SEARCH | - |
dc.subject.keywordPlus | DESIGN | - |
dc.identifier.url | https://ieeexplore.ieee.org/document/6052374 | - |
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.
55 Hanyangdeahak-ro, Sangnok-gu, Ansan, Gyeonggi-do, 15588, Korea+82-31-400-4269 sweetbrain@hanyang.ac.kr
COPYRIGHT © 2021 HANYANG UNIVERSITY. ALL RIGHTS RESERVED.
Certain data included herein are derived from the © Web of Science of Clarivate Analytics. All rights reserved.
You may not copy or re-distribute this material in whole or in part without the prior written consent of Clarivate Analytics.