Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Evolutionary Computation Meets Machine Learning: A Survey

Full metadata record
DC Field Value Language
dc.contributor.authorZhang, Jun-
dc.contributor.authorZhan, Zhi-hui-
dc.contributor.authorLin, Ying-
dc.contributor.authorChen, Ni-
dc.contributor.authorGong, Yue-jiao-
dc.contributor.authorZhong, Jing-hui-
dc.contributor.authorChung, Henry S. H.-
dc.contributor.authorLi, Yun-
dc.contributor.authorShi, Yu-hui-
dc.date.accessioned2023-12-08T10:29:21Z-
dc.date.available2023-12-08T10:29:21Z-
dc.date.issued2011-11-
dc.identifier.issn1556-603X-
dc.identifier.issn1556-6048-
dc.identifier.urihttps://scholarworks.bwise.kr/erica/handle/2021.sw.erica/116116-
dc.description.abstractEvolutionary computation (EC) is a kind of optimization methodology inspired by the mechanisms of biological evolution and behaviors of living organisms. In the literature, the terminology evolutionary algorithms is frequently treated the same as EC. This article focuses on making a survey of researches based on using ML techniques to enhance EC algorithms. In the framework of an ML-technique enhanced-EC algorithm (MLEC), the main idea is that the EC algorithm has stored ample data about the search space, problem features, and population information during the iterative search process, thus the ML technique is helpful in analyzing these data for enhancing the search performance. The paper presents a survey of five categories: ML for population initialization, ML for fitness evaluation and selection, ML for population reproduction and variation, ML for algorithm adaptation, and ML for local search.-
dc.format.extent8-
dc.language영어-
dc.language.isoENG-
dc.publisherInstitute of Electrical and Electronics Engineers-
dc.titleEvolutionary Computation Meets Machine Learning: A Survey-
dc.typeArticle-
dc.publisher.location미국-
dc.identifier.doi10.1109/MCI.2011.942584-
dc.identifier.scopusid2-s2.0-80054958010-
dc.identifier.wosid000296102000007-
dc.identifier.bibliographicCitationIEEE Computational Intelligence Magazine, v.6, no.4, pp 68 - 75-
dc.citation.titleIEEE Computational Intelligence Magazine-
dc.citation.volume6-
dc.citation.number4-
dc.citation.startPage68-
dc.citation.endPage75-
dc.type.docTypeReview-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaComputer Science-
dc.relation.journalWebOfScienceCategoryComputer Science, Artificial Intelligence-
dc.subject.keywordPlusGENETIC ALGORITHM-
dc.subject.keywordPlusOPTIMIZATION-
dc.subject.keywordPlusAPPROXIMATION-
dc.subject.keywordPlusCROSSOVER-
dc.subject.keywordPlusSEARCH-
dc.subject.keywordPlusDESIGN-
dc.identifier.urlhttps://ieeexplore.ieee.org/document/6052374-
Files in This Item
Appears in
Collections
COLLEGE OF ENGINEERING SCIENCES > SCHOOL OF ELECTRICAL ENGINEERING > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher ZHANG, Jun photo

ZHANG, Jun
ERICA 공학대학 (SCHOOL OF ELECTRICAL ENGINEERING)
Read more

Altmetrics

Total Views & Downloads

BROWSE