Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Multi-population Differential Evolution with Adaptive Parameter Control for Global Optimization

Full metadata record
DC Field Value Language
dc.contributor.authorYu, Wei-jie-
dc.contributor.authorZhang, Jun-
dc.date.accessioned2023-12-08T10:29:24Z-
dc.date.available2023-12-08T10:29:24Z-
dc.date.issued2011-07-
dc.identifier.urihttps://scholarworks.bwise.kr/erica/handle/2021.sw.erica/116121-
dc.description.abstractDifferential evolution (DE) is one of the most successful evolutionary algorithms (EAs) for global numerical optimization. Like other EAs, maintaining population diversity is important for DE to escape from local optima and locate a near-global optimum. Using a multi-population algorithm is a representative method to avoid early loss of population diversity. In this paper, we propose a multi-population DE algorithm (MPDE) which manipulates multiple sub-populations. Different sub-populations in MPDE exchange information via a novel mutation operation instead of migration used in most multi-population EAs. The mutation operation is helpful to balance the fast convergence and population diversity of the proposed algorithm. Moreover, the performance of MPDE is further improved by an adaptive parameter control scheme designed based on the multi-population approach. Each sub-population in MPDE evolves with its own set of control parameters, and a learning strategy is used to adaptively adjust the parameter values. A set of benchmark functions is used to test the proposed MPDE algorithm. The experimental results show that MPDE performs better than, or at least comparably, to the classical single population DE with fixed parameter values and three existing state-of-the-art DE variants.-
dc.format.extent6-
dc.language영어-
dc.language.isoENG-
dc.publisherASSOC COMPUTING MACHINERY-
dc.titleMulti-population Differential Evolution with Adaptive Parameter Control for Global Optimization-
dc.typeArticle-
dc.publisher.location미국-
dc.identifier.doi10.1145/2001576.2001724-
dc.identifier.scopusid2-s2.0-84860414815-
dc.identifier.wosid000322137100138-
dc.identifier.bibliographicCitationGECCO '11: Proceedings of the 13th annual conference on Genetic and evolutionary computation, pp 1093 - 1098-
dc.citation.titleGECCO '11: Proceedings of the 13th annual conference on Genetic and evolutionary computation-
dc.citation.startPage1093-
dc.citation.endPage1098-
dc.type.docTypeProceedings Paper-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaComputer Science-
dc.relation.journalResearchAreaMathematics-
dc.relation.journalWebOfScienceCategoryComputer Science, Artificial Intelligence-
dc.relation.journalWebOfScienceCategoryComputer Science, Software Engineering-
dc.relation.journalWebOfScienceCategoryMathematics, Applied-
dc.subject.keywordAuthorDifferential evolution-
dc.subject.keywordAuthormulti-population-
dc.subject.keywordAuthoradaptive parameter control-
dc.subject.keywordAuthorglobal optimization-
dc.identifier.urlhttps://dl.acm.org/doi/10.1145/2001576.2001724-
Files in This Item
Appears in
Collections
COLLEGE OF ENGINEERING SCIENCES > SCHOOL OF ELECTRICAL ENGINEERING > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher ZHANG, Jun photo

ZHANG, Jun
ERICA 공학대학 (SCHOOL OF ELECTRICAL ENGINEERING)
Read more

Altmetrics

Total Views & Downloads

BROWSE