Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

A quantum-inspired genetic algorithm for <i>k</i>-means clustering

Full metadata record
DC Field Value Language
dc.contributor.authorXiao, Jing-
dc.contributor.authorYan, YuPing-
dc.contributor.authorZhang, Jun-
dc.contributor.authorTang, Yong-
dc.date.accessioned2023-12-08T10:29:27Z-
dc.date.available2023-12-08T10:29:27Z-
dc.date.issued2010-07-
dc.identifier.issn0957-4174-
dc.identifier.issn1873-6793-
dc.identifier.urihttps://scholarworks.bwise.kr/erica/handle/2021.sw.erica/116128-
dc.description.abstractThe number of clusters has to be known in advance for the conventional k-means clustering algorithm and moreover the clustering result is sensitive to the selection of the initial cluster centroids. This sensitivity may make the algorithm converge to the local optima. This paper proposes a quantum-inspired genetic algorithm for k-means clustering (KMQGA). In KMQGA, a Q-bit based representation is employed for exploration and exploitation in discrete 0-1 hyperspace using rotation operation of quantum gate as well as the typical genetic algorithm operations (selection, crossover and mutation) of Q-bits. Different from the typical quantum-inspired genetic algorithms (QGA), the length of a Q-bit in KMQGA is variable during evolution. Without knowing the exact number of clusters beforehand. KMQGA can obtain the optimal number of clusters as well as providing the optimal cluster centroids. Both the simulated datasets and the real datasets are used to validate KMQGA. respectively. The experimental results show that KMQGA is promising and effective. (C) 2009 Elsevier Ltd. All rights reserved.-
dc.format.extent8-
dc.language영어-
dc.language.isoENG-
dc.publisherPergamon Press Ltd.-
dc.titleA quantum-inspired genetic algorithm for &lt;i&gt;k&lt;/i&gt;-means clustering-
dc.typeArticle-
dc.publisher.location영국-
dc.identifier.doi10.1016/j.eswa.2009.12.017-
dc.identifier.scopusid2-s2.0-77950188877-
dc.identifier.wosid000277726300029-
dc.identifier.bibliographicCitationExpert Systems with Applications, v.37, no.7, pp 4966 - 4973-
dc.citation.titleExpert Systems with Applications-
dc.citation.volume37-
dc.citation.number7-
dc.citation.startPage4966-
dc.citation.endPage4973-
dc.type.docTypeArticle-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaComputer Science-
dc.relation.journalResearchAreaEngineering-
dc.relation.journalResearchAreaOperations Research &amp; Management Science-
dc.relation.journalWebOfScienceCategoryComputer Science, Artificial Intelligence-
dc.relation.journalWebOfScienceCategoryEngineering, Electrical &amp; Electronic-
dc.relation.journalWebOfScienceCategoryOperations Research &amp; Management Science-
dc.subject.keywordAuthork-means clustering-
dc.subject.keywordAuthorGenetic algorithms-
dc.subject.keywordAuthorQuantum-inspired genetic algorithms-
dc.identifier.urlhttps://www.sciencedirect.com/science/article/pii/S095741740901063X?via%3Dihub-
Files in This Item
Appears in
Collections
COLLEGE OF ENGINEERING SCIENCES > SCHOOL OF ELECTRICAL ENGINEERING > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher ZHANG, Jun photo

ZHANG, Jun
ERICA 공학대학 (SCHOOL OF ELECTRICAL ENGINEERING)
Read more

Altmetrics

Total Views & Downloads

BROWSE