Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Generating Software Test Data by Particle Swarm Optimization

Full metadata record
DC Field Value Language
dc.contributor.authorJia, Ya-Hui-
dc.contributor.authorChen, Wei-Neng-
dc.contributor.authorZhang, Jun-
dc.contributor.authorLi, Jing-Jing-
dc.date.accessioned2023-12-08T10:29:34Z-
dc.date.available2023-12-08T10:29:34Z-
dc.date.issued2014-12-
dc.identifier.urihttps://scholarworks.bwise.kr/erica/handle/2021.sw.erica/116139-
dc.description.abstractSearch-based method using meta-heuristic algorithms is a hot topic in automatic test data generation. In this paper, we develop an automatic test data generating tool named particle swarm optimization data generation tool (PSODGT). The PSODGT is characterized by the following two features. First, the PSODGT adopts the condition-decision coverage (C/DC) as the criterion of software testing, aiming to build an efficient test data set that covers all conditions. Second, the PSODGT uses a particle swarm optimization (PSO) approach to generate test data set. In addition, a new position initialization technique is developed for PSO. Instead of initializing the test data randomly, the proposed technique uses the previously-found test data that can reach the target condition as the initial positions so that the search speed of PSODGT can be further accelerated. The PSODGT is tested on four practical programs. Experimental results show that the proposed PSO approach is promising.-
dc.format.extent11-
dc.language영어-
dc.language.isoENG-
dc.publisherSpringer Verlag-
dc.titleGenerating Software Test Data by Particle Swarm Optimization-
dc.typeArticle-
dc.publisher.location미국-
dc.identifier.doi10.1007/978-3-319-13563-2_4-
dc.identifier.scopusid2-s2.0-84921446534-
dc.identifier.wosid000354867200004-
dc.identifier.bibliographicCitationSimulated Evolution and Learning 10th International Conference, SEAL 2014, Dunedin, New Zealand, December 15-18, Proceedings, pp 37 - 47-
dc.citation.titleSimulated Evolution and Learning 10th International Conference, SEAL 2014, Dunedin, New Zealand, December 15-18, Proceedings-
dc.citation.startPage37-
dc.citation.endPage47-
dc.type.docTypeProceedings Paper-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaComputer Science-
dc.relation.journalWebOfScienceCategoryComputer Science, Artificial Intelligence-
dc.relation.journalWebOfScienceCategoryComputer Science, Information Systems-
dc.relation.journalWebOfScienceCategoryComputer Science, Theory & Methods-
dc.subject.keywordAuthorParticle swarm optimization-
dc.subject.keywordAuthorAutomatic software test case generation-
dc.subject.keywordAuthorSoftware testing-
dc.subject.keywordAuthorCode coverage-
dc.identifier.urlhttps://link.springer.com/chapter/10.1007/978-3-319-13563-2_4-
Files in This Item
Appears in
Collections
COLLEGE OF ENGINEERING SCIENCES > SCHOOL OF ELECTRICAL ENGINEERING > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher ZHANG, Jun photo

ZHANG, Jun
ERICA 공학대학 (SCHOOL OF ELECTRICAL ENGINEERING)
Read more

Altmetrics

Total Views & Downloads

BROWSE