A Tribal Ecosystem Inspired Algorithm (TEA) For Global Optimization
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Lin, Ying | - |
dc.contributor.author | Li, Jing-Jing | - |
dc.contributor.author | Zhang, Jun | - |
dc.contributor.author | Wan, Meng | - |
dc.date.accessioned | 2023-12-08T10:29:35Z | - |
dc.date.available | 2023-12-08T10:29:35Z | - |
dc.date.issued | 2014-07 | - |
dc.identifier.uri | https://scholarworks.bwise.kr/erica/handle/2021.sw.erica/116142 | - |
dc.description.abstract | Evolution mechanisms of different biological and social systems have inspired a variety of evolutionary computation (EC) algorithms. However, most existing EC algorithms simulate the evolution procedure at the individual-level. This paper proposes a new EC mechanism inspired by the evolution procedure at the tribe-level, namely tribal ecosystem inspired algorithm (TEA). In TEA, the basic evolution unit is not an individual that represents a solution point, but a tribe that covers a subarea in the search space. More specifically, a tribe represents the solution set locating in a particular subarea with a coding structure composed of three elements: tribal chief, attribute diversity, and advancing history. The tribal chief represents the locally best-so-far solution, the attribute diversity measures the range of the subarea, and the advancing history records the local search experience. This way, the new evolution unit provides extra knowledge about neighborhood profiles and search history. Using this knowledge, TEA introduces four evolution operators, reforms, self-advance, synergistic combination, and augmentation, to simulate the evolution mechanisms in a tribal ecosystem, which evolves the tribes from potentially promising subareas to the global optimum. The proposed TEA is validated on benchmark functions. Comparisons with three representative EC algorithms confirm its promising performance. | - |
dc.format.extent | 8 | - |
dc.language | 영어 | - |
dc.language.iso | ENG | - |
dc.publisher | ASSOC COMPUTING MACHINERY | - |
dc.title | A Tribal Ecosystem Inspired Algorithm (TEA) For Global Optimization | - |
dc.type | Article | - |
dc.publisher.location | 미국 | - |
dc.identifier.doi | 10.1145/2576768.2598253 | - |
dc.identifier.scopusid | 2-s2.0-84905678170 | - |
dc.identifier.wosid | 000364333000005 | - |
dc.identifier.bibliographicCitation | GECCO '14: Proceedings of the 2014 Annual Conference on Genetic and Evolutionary Computation, pp 33 - 40 | - |
dc.citation.title | GECCO '14: Proceedings of the 2014 Annual Conference on Genetic and Evolutionary Computation | - |
dc.citation.startPage | 33 | - |
dc.citation.endPage | 40 | - |
dc.type.docType | Proceedings Paper | - |
dc.description.isOpenAccess | N | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.relation.journalResearchArea | Computer Science | - |
dc.relation.journalResearchArea | Operations Research & Management Science | - |
dc.relation.journalWebOfScienceCategory | Computer Science, Artificial Intelligence | - |
dc.relation.journalWebOfScienceCategory | Operations Research & Management Science | - |
dc.subject.keywordAuthor | Algorithms | - |
dc.subject.keywordAuthor | Experimentation | - |
dc.subject.keywordAuthor | Evolutionary computation (EC) | - |
dc.subject.keywordAuthor | global optimization | - |
dc.subject.keywordAuthor | tribe | - |
dc.identifier.url | https://dl.acm.org/doi/10.1145/2576768.2598253 | - |
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.
55 Hanyangdeahak-ro, Sangnok-gu, Ansan, Gyeonggi-do, 15588, Korea+82-31-400-4269 sweetbrain@hanyang.ac.kr
COPYRIGHT © 2021 HANYANG UNIVERSITY. ALL RIGHTS RESERVED.
Certain data included herein are derived from the © Web of Science of Clarivate Analytics. All rights reserved.
You may not copy or re-distribute this material in whole or in part without the prior written consent of Clarivate Analytics.