Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Performance Analysis of Evolutionary Algorithms for the Minimum Label Spanning Tree Problem

Full metadata record
DC Field Value Language
dc.contributor.authorLai, Xinsheng-
dc.contributor.authorZhou, Yuren-
dc.contributor.authorHe, Jun-
dc.contributor.authorZhang, Jun-
dc.date.accessioned2023-12-08T10:29:44Z-
dc.date.available2023-12-08T10:29:44Z-
dc.date.issued2014-12-
dc.identifier.issn1089-778X-
dc.identifier.issn1941-0026-
dc.identifier.urihttps://scholarworks.bwise.kr/erica/handle/2021.sw.erica/116160-
dc.description.abstractA few experimental investigations have shown that evolutionary algorithms (EAs) are efficient for the minimum label spanning tree (MLST) problem. However, we know little about that in theory. In this paper, we theoretically analyze the performances of the (1+1) EA, a simple version of EA, and a simple multiobjective evolutionary algorithm called GSEMO on the MLST problem. We reveal that for the MLSTb problem, the (1+1) EA and GSEMO achieve a (b + 1)/2-approximation ratio in expected polynomial runtime with respect to n, the number of nodes, and k, the number of labels. We also find that GSEMO achieves a (2 ln n+1)-approximation ratio for the MLST problem in expected polynomial runtime with respect to n and k. At the same time, we show that the (1+1) EA and GSEMO outperform local search algorithms on three instances of the MLST problem. We also construct an instance on which GSEMO outperforms the (1+1) EA.-
dc.format.extent13-
dc.language영어-
dc.language.isoENG-
dc.publisherInstitute of Electrical and Electronics Engineers-
dc.titlePerformance Analysis of Evolutionary Algorithms for the Minimum Label Spanning Tree Problem-
dc.typeArticle-
dc.publisher.location미국-
dc.identifier.doi10.1109/TEVC.2013.2291790-
dc.identifier.scopusid2-s2.0-84908592212-
dc.identifier.wosid000345907800006-
dc.identifier.bibliographicCitationIEEE Transactions on Evolutionary Computation, v.18, no.6, pp 860 - 872-
dc.citation.titleIEEE Transactions on Evolutionary Computation-
dc.citation.volume18-
dc.citation.number6-
dc.citation.startPage860-
dc.citation.endPage872-
dc.type.docTypeArticle-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClasssci-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaComputer Science-
dc.relation.journalWebOfScienceCategoryComputer Science, Artificial Intelligence-
dc.relation.journalWebOfScienceCategoryComputer Science, Theory & Methods-
dc.subject.keywordPlusEXPECTED RUNTIMES-
dc.subject.keywordPlusGENETIC ALGORITHMS-
dc.subject.keywordPlusLOCAL SEARCH-
dc.subject.keywordPlusTIME-
dc.subject.keywordPlusCROSSOVER-
dc.subject.keywordAuthorApproximation ratio-
dc.subject.keywordAuthorevolutionary algorithm-
dc.subject.keywordAuthorminimum label spanning tree-
dc.subject.keywordAuthormultiobjective-
dc.subject.keywordAuthorruntime complexity-
dc.identifier.urlhttps://ieeexplore.ieee.org/document/6670713-
Files in This Item
Appears in
Collections
COLLEGE OF ENGINEERING SCIENCES > SCHOOL OF ELECTRICAL ENGINEERING > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher ZHANG, Jun photo

ZHANG, Jun
ERICA 공학대학 (SCHOOL OF ELECTRICAL ENGINEERING)
Read more

Altmetrics

Total Views & Downloads

BROWSE