Performance Analysis of Evolutionary Algorithms for the Minimum Label Spanning Tree Problem
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Lai, Xinsheng | - |
dc.contributor.author | Zhou, Yuren | - |
dc.contributor.author | He, Jun | - |
dc.contributor.author | Zhang, Jun | - |
dc.date.accessioned | 2023-12-08T10:29:44Z | - |
dc.date.available | 2023-12-08T10:29:44Z | - |
dc.date.issued | 2014-12 | - |
dc.identifier.issn | 1089-778X | - |
dc.identifier.issn | 1941-0026 | - |
dc.identifier.uri | https://scholarworks.bwise.kr/erica/handle/2021.sw.erica/116160 | - |
dc.description.abstract | A few experimental investigations have shown that evolutionary algorithms (EAs) are efficient for the minimum label spanning tree (MLST) problem. However, we know little about that in theory. In this paper, we theoretically analyze the performances of the (1+1) EA, a simple version of EA, and a simple multiobjective evolutionary algorithm called GSEMO on the MLST problem. We reveal that for the MLSTb problem, the (1+1) EA and GSEMO achieve a (b + 1)/2-approximation ratio in expected polynomial runtime with respect to n, the number of nodes, and k, the number of labels. We also find that GSEMO achieves a (2 ln n+1)-approximation ratio for the MLST problem in expected polynomial runtime with respect to n and k. At the same time, we show that the (1+1) EA and GSEMO outperform local search algorithms on three instances of the MLST problem. We also construct an instance on which GSEMO outperforms the (1+1) EA. | - |
dc.format.extent | 13 | - |
dc.language | 영어 | - |
dc.language.iso | ENG | - |
dc.publisher | Institute of Electrical and Electronics Engineers | - |
dc.title | Performance Analysis of Evolutionary Algorithms for the Minimum Label Spanning Tree Problem | - |
dc.type | Article | - |
dc.publisher.location | 미국 | - |
dc.identifier.doi | 10.1109/TEVC.2013.2291790 | - |
dc.identifier.scopusid | 2-s2.0-84908592212 | - |
dc.identifier.wosid | 000345907800006 | - |
dc.identifier.bibliographicCitation | IEEE Transactions on Evolutionary Computation, v.18, no.6, pp 860 - 872 | - |
dc.citation.title | IEEE Transactions on Evolutionary Computation | - |
dc.citation.volume | 18 | - |
dc.citation.number | 6 | - |
dc.citation.startPage | 860 | - |
dc.citation.endPage | 872 | - |
dc.type.docType | Article | - |
dc.description.isOpenAccess | N | - |
dc.description.journalRegisteredClass | sci | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.relation.journalResearchArea | Computer Science | - |
dc.relation.journalWebOfScienceCategory | Computer Science, Artificial Intelligence | - |
dc.relation.journalWebOfScienceCategory | Computer Science, Theory & Methods | - |
dc.subject.keywordPlus | EXPECTED RUNTIMES | - |
dc.subject.keywordPlus | GENETIC ALGORITHMS | - |
dc.subject.keywordPlus | LOCAL SEARCH | - |
dc.subject.keywordPlus | TIME | - |
dc.subject.keywordPlus | CROSSOVER | - |
dc.subject.keywordAuthor | Approximation ratio | - |
dc.subject.keywordAuthor | evolutionary algorithm | - |
dc.subject.keywordAuthor | minimum label spanning tree | - |
dc.subject.keywordAuthor | multiobjective | - |
dc.subject.keywordAuthor | runtime complexity | - |
dc.identifier.url | https://ieeexplore.ieee.org/document/6670713 | - |
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.
55 Hanyangdeahak-ro, Sangnok-gu, Ansan, Gyeonggi-do, 15588, Korea+82-31-400-4269 sweetbrain@hanyang.ac.kr
COPYRIGHT © 2021 HANYANG UNIVERSITY. ALL RIGHTS RESERVED.
Certain data included herein are derived from the © Web of Science of Clarivate Analytics. All rights reserved.
You may not copy or re-distribute this material in whole or in part without the prior written consent of Clarivate Analytics.