Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Transfer Clustering Ensemble Selection

Full metadata record
DC Field Value Language
dc.contributor.authorShi, Yifan-
dc.contributor.authorYu, Zhiwen-
dc.contributor.authorChen, C. L. Philip-
dc.contributor.authorYou, Jane-
dc.contributor.authorWong, Hau-San-
dc.contributor.authorWang, Yide-
dc.contributor.authorZhang, Jun-
dc.date.accessioned2023-12-12T12:30:34Z-
dc.date.available2023-12-12T12:30:34Z-
dc.date.issued2020-06-
dc.identifier.issn2168-2267-
dc.identifier.issn2168-2275-
dc.identifier.urihttps://scholarworks.bwise.kr/erica/handle/2021.sw.erica/116313-
dc.description.abstractClustering ensemble (CE) takes multiple clustering solutions into consideration in order to effectively improve the accuracy and robustness of the final result. To reduce redundancy as well as noise, a CE selection (CES) step is added to further enhance performance. Quality and diversity are two important metrics of CES. However, most of the CES strategies adopt heuristic selection methods or a threshold parameter setting to achieve tradeoff between quality and diversity. In this paper, we propose a transfer CES (TCES) algorithm which makes use of the relationship between quality and diversity in a source dataset, and transfers it into a target dataset based on three objective functions. Furthermore, a multiobjective self-evolutionary process is designed to optimize these three objective functions. Finally, we construct a transfer CE framework (TCE-TCES) based on TCES to obtain better clustering results. The experimental results on 12 transfer clustering tasks obtained from the 20newsgroups dataset show that TCE-TCES can find a better tradeoff between quality and diversity, as well as obtaining more desirable clustering results.-
dc.format.extent14-
dc.language영어-
dc.language.isoENG-
dc.publisherIEEE Advancing Technology for Humanity-
dc.titleTransfer Clustering Ensemble Selection-
dc.typeArticle-
dc.publisher.location미국-
dc.identifier.doi10.1109/TCYB.2018.2885585-
dc.identifier.scopusid2-s2.0-85059251046-
dc.identifier.wosid000536299200047-
dc.identifier.bibliographicCitationIEEE Transactions on Cybernetics, v.50, no.6, pp 2872 - 2885-
dc.citation.titleIEEE Transactions on Cybernetics-
dc.citation.volume50-
dc.citation.number6-
dc.citation.startPage2872-
dc.citation.endPage2885-
dc.type.docType정기학술지(Article(Perspective Article포함))-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaAutomation & Control Systems-
dc.relation.journalResearchAreaComputer Science-
dc.relation.journalWebOfScienceCategoryAutomation & Control Systems-
dc.relation.journalWebOfScienceCategoryComputer Science, Artificial Intelligence-
dc.relation.journalWebOfScienceCategoryComputer Science, Cybernetics-
dc.subject.keywordPlusFRAMEWORK-
dc.subject.keywordPlusDIVERSITY-
dc.subject.keywordPlusCONSENSUS-
dc.subject.keywordPlusQUALITY-
dc.subject.keywordPlusSCHEME-
dc.subject.keywordAuthorClustering ensemble selection (CES)-
dc.subject.keywordAuthormachine learning-
dc.subject.keywordAuthormultiobjective-
dc.subject.keywordAuthortransfer learning-
dc.identifier.urlhttps://ieeexplore.ieee.org/document/8588377-
Files in This Item
Appears in
Collections
COLLEGE OF ENGINEERING SCIENCES > SCHOOL OF ELECTRICAL ENGINEERING > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher ZHANG, Jun photo

ZHANG, Jun
ERICA 공학대학 (SCHOOL OF ELECTRICAL ENGINEERING)
Read more

Altmetrics

Total Views & Downloads

BROWSE