Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

A Diversity-Enhanced Resource Allocation Strategy for Decomposition-Based Multiobjective Evolutionary Algorithm

Full metadata record
DC Field Value Language
dc.contributor.authorLin, Qiuzhen-
dc.contributor.authorJin, Genmiao-
dc.contributor.authorMa, Yueping-
dc.contributor.authorWong, Ka-Chun-
dc.contributor.authorCoello, Carlos A. Coello-
dc.contributor.authorLi, Jianqiang-
dc.contributor.authorChen, Jianyong-
dc.contributor.authorZHANG, Jun-
dc.date.accessioned2023-12-12T12:30:44Z-
dc.date.available2023-12-12T12:30:44Z-
dc.date.issued2018-08-
dc.identifier.issn2168-2267-
dc.identifier.issn2168-2275-
dc.identifier.urihttps://scholarworks.bwise.kr/erica/handle/2021.sw.erica/116328-
dc.description.abstractThe multiobjective evolutionary algorithm (MOEA) based on decomposition transforms a multiobjective optimization problem into a set of aggregated subproblems and then optimizes them collaboratively. Since these subproblems usually have different degrees of difficulty, resource allocation (RA) strategies have been reported to enhance performance, attempting to dynamically assign proper amounts of computational resources for the solution of each of these subproblems. However, existing schemes for decomposition-based MOEAs fully rely on the relative improvement of the aggregated functions to do this. This paper proposes a diversity-enhanced RA strategy for this kind of MOEA, depending on both relative improvement on aggregated function value and solution density around each subproblem to assign computational resources. Thus, one subproblem surrounded with fewer solutions in its neighboring area and more relative improvement on the aggregated function value will be allocated a higher probability for evolution. Our experimental results show the advantages of our proposed strategy over two popular RA strategies available for decomposition-based MOEAs, on tackling a set of complicated benchmark problems. © 2017 IEEE.-
dc.format.extent114-
dc.language영어-
dc.language.isoENG-
dc.publisherIEEE Advancing Technology for Humanity-
dc.titleA Diversity-Enhanced Resource Allocation Strategy for Decomposition-Based Multiobjective Evolutionary Algorithm-
dc.typeArticle-
dc.publisher.location미국-
dc.identifier.doi10.1109/TCYB.2017.2739185-
dc.identifier.scopusid2-s2.0-85029161869-
dc.identifier.wosid000439363600015-
dc.identifier.bibliographicCitationIEEE Transactions on Cybernetics, v.48, no.8, pp 2388 - 2501-
dc.citation.titleIEEE Transactions on Cybernetics-
dc.citation.volume48-
dc.citation.number8-
dc.citation.startPage2388-
dc.citation.endPage2501-
dc.type.docType정기학술지(Article(Perspective Article포함))-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClasssci-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaAutomation & Control Systems-
dc.relation.journalResearchAreaComputer Science-
dc.relation.journalWebOfScienceCategoryAutomation & Control Systems-
dc.relation.journalWebOfScienceCategoryComputer Science, Artificial Intelligence-
dc.relation.journalWebOfScienceCategoryComputer Science, Cybernetics-
dc.subject.keywordPlusOPTIMIZATION PROBLEMS-
dc.subject.keywordPlusMOEA/D-
dc.subject.keywordPlusSELECTION-
dc.subject.keywordPlusPERFORMANCE-
dc.subject.keywordPlusPROXIMITY-
dc.subject.keywordPlusECONOMICS-
dc.subject.keywordPlusFINANCE-
dc.subject.keywordPlusBALANCE-
dc.subject.keywordPlusVERSION-
dc.subject.keywordAuthorDecomposition-
dc.subject.keywordAuthormultiobjective optimization-
dc.subject.keywordAuthorresource allocation (RA)-
dc.subject.keywordAuthorsolution density-
dc.identifier.urlhttps://ieeexplore.ieee.org/document/8026151?arnumber=8026151&SID=EBSCO:edseee-
Files in This Item
Appears in
Collections
COLLEGE OF ENGINEERING SCIENCES > SCHOOL OF ELECTRICAL ENGINEERING > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher ZHANG, Jun photo

ZHANG, Jun
ERICA 공학대학 (SCHOOL OF ELECTRICAL ENGINEERING)
Read more

Altmetrics

Total Views & Downloads

BROWSE