A Diversity-Enhanced Resource Allocation Strategy for Decomposition-Based Multiobjective Evolutionary Algorithm
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Lin, Qiuzhen | - |
dc.contributor.author | Jin, Genmiao | - |
dc.contributor.author | Ma, Yueping | - |
dc.contributor.author | Wong, Ka-Chun | - |
dc.contributor.author | Coello, Carlos A. Coello | - |
dc.contributor.author | Li, Jianqiang | - |
dc.contributor.author | Chen, Jianyong | - |
dc.contributor.author | ZHANG, Jun | - |
dc.date.accessioned | 2023-12-12T12:30:44Z | - |
dc.date.available | 2023-12-12T12:30:44Z | - |
dc.date.issued | 2018-08 | - |
dc.identifier.issn | 2168-2267 | - |
dc.identifier.issn | 2168-2275 | - |
dc.identifier.uri | https://scholarworks.bwise.kr/erica/handle/2021.sw.erica/116328 | - |
dc.description.abstract | The multiobjective evolutionary algorithm (MOEA) based on decomposition transforms a multiobjective optimization problem into a set of aggregated subproblems and then optimizes them collaboratively. Since these subproblems usually have different degrees of difficulty, resource allocation (RA) strategies have been reported to enhance performance, attempting to dynamically assign proper amounts of computational resources for the solution of each of these subproblems. However, existing schemes for decomposition-based MOEAs fully rely on the relative improvement of the aggregated functions to do this. This paper proposes a diversity-enhanced RA strategy for this kind of MOEA, depending on both relative improvement on aggregated function value and solution density around each subproblem to assign computational resources. Thus, one subproblem surrounded with fewer solutions in its neighboring area and more relative improvement on the aggregated function value will be allocated a higher probability for evolution. Our experimental results show the advantages of our proposed strategy over two popular RA strategies available for decomposition-based MOEAs, on tackling a set of complicated benchmark problems. © 2017 IEEE. | - |
dc.format.extent | 114 | - |
dc.language | 영어 | - |
dc.language.iso | ENG | - |
dc.publisher | IEEE Advancing Technology for Humanity | - |
dc.title | A Diversity-Enhanced Resource Allocation Strategy for Decomposition-Based Multiobjective Evolutionary Algorithm | - |
dc.type | Article | - |
dc.publisher.location | 미국 | - |
dc.identifier.doi | 10.1109/TCYB.2017.2739185 | - |
dc.identifier.scopusid | 2-s2.0-85029161869 | - |
dc.identifier.wosid | 000439363600015 | - |
dc.identifier.bibliographicCitation | IEEE Transactions on Cybernetics, v.48, no.8, pp 2388 - 2501 | - |
dc.citation.title | IEEE Transactions on Cybernetics | - |
dc.citation.volume | 48 | - |
dc.citation.number | 8 | - |
dc.citation.startPage | 2388 | - |
dc.citation.endPage | 2501 | - |
dc.type.docType | 정기학술지(Article(Perspective Article포함)) | - |
dc.description.isOpenAccess | N | - |
dc.description.journalRegisteredClass | sci | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.relation.journalResearchArea | Automation & Control Systems | - |
dc.relation.journalResearchArea | Computer Science | - |
dc.relation.journalWebOfScienceCategory | Automation & Control Systems | - |
dc.relation.journalWebOfScienceCategory | Computer Science, Artificial Intelligence | - |
dc.relation.journalWebOfScienceCategory | Computer Science, Cybernetics | - |
dc.subject.keywordPlus | OPTIMIZATION PROBLEMS | - |
dc.subject.keywordPlus | MOEA/D | - |
dc.subject.keywordPlus | SELECTION | - |
dc.subject.keywordPlus | PERFORMANCE | - |
dc.subject.keywordPlus | PROXIMITY | - |
dc.subject.keywordPlus | ECONOMICS | - |
dc.subject.keywordPlus | FINANCE | - |
dc.subject.keywordPlus | BALANCE | - |
dc.subject.keywordPlus | VERSION | - |
dc.subject.keywordAuthor | Decomposition | - |
dc.subject.keywordAuthor | multiobjective optimization | - |
dc.subject.keywordAuthor | resource allocation (RA) | - |
dc.subject.keywordAuthor | solution density | - |
dc.identifier.url | https://ieeexplore.ieee.org/document/8026151?arnumber=8026151&SID=EBSCO:edseee | - |
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.
55 Hanyangdeahak-ro, Sangnok-gu, Ansan, Gyeonggi-do, 15588, Korea+82-31-400-4269 sweetbrain@hanyang.ac.kr
COPYRIGHT © 2021 HANYANG UNIVERSITY. ALL RIGHTS RESERVED.
Certain data included herein are derived from the © Web of Science of Clarivate Analytics. All rights reserved.
You may not copy or re-distribute this material in whole or in part without the prior written consent of Clarivate Analytics.