Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Exploring sustainable corrosion inhibition of copper in saline environment: An examination of hydroquinazolinones via experimental and ab initio DFT simulationsopen access

Authors
Oubahou, MohammedRbaa, MohamedLgaz, HassaneTakky, DrissNaimi, YoussefAlrashdi, Awad A.Lee, Han-seung
Issue Date
May-2024
Publisher
Elsevier B.V.
Keywords
Copper corrosion; Density functional theory simulation; Electrochemical methods; Hydroquinazolinones; Saline environment
Citation
Arabian Journal of Chemistry, v.17, no.5, pp 1 - 21
Pages
21
Indexed
SCIE
SCOPUS
Journal Title
Arabian Journal of Chemistry
Volume
17
Number
5
Start Page
1
End Page
21
URI
https://scholarworks.bwise.kr/erica/handle/2021.sw.erica/118362
DOI
10.1016/j.arabjc.2024.105716
ISSN
1878-5352
1878-5379
Abstract
Copper's potential in various applications is constrained due to environmental degradation, particularly in high-salinity environments, representing a sustainability concern. Herein, two novel hydroquinazolinones, namely 1-((4-hydroxynaphthalen-1-yl)methyl)-2-phenyl-2,3-dihydroquinazolin-4(1H)-one (DQ-H) and 1-((4-hydroxynaphthalen-1-yl)methyl)-2-(p-tolyl)-2,3-dihydroquinazolin-4(1H)-one (DQ-CH3), were analyzed for their ability to inhibit copper corrosion in a 3.5 % NaCl solution. The compounds, characterized by 1H and 13C NMR, were evaluated via potentiodynamic polarization curves, electrochemical impedance spectroscopy, and weight loss measurements. Comprehensive analyses utilizing scanning electron microscopy, Fourier Transform Infrared, and UV–vis spectroscopy have revealed insights into the surface morphology and the interactive nature of inhibitor molecules with the copper surface. Our findings highlight the formation of a strong, sustainable inhibitor film on the copper surface due to the addition of hydroquinazolinones, thereby exhibiting an enhanced polarization resistance and decreased double-layer capacitance. Both DQ-H and DQ-CH3 demonstrated a considerable inhibition effect, with efficiencies of 92 % and 94 % respectively, illustrating their potential for sustainable copper protection. Electrochemical impedance spectroscopy (EIS) results indicated a significant increase in polarization resistance from 605.7 (blank) to 9403 and 12861 Ω cm2, after the addition of DQ-H and DQ-CH3, respectively. Furthermore, the adsorption attributes of the compounds on the Cu(1 1 1) surface were examined using first-principles density functional theory simulation, revealing several covalent bonds formation. Our work aims to contribute to sustainability efforts in materials science by offering a corrosion-protective solution that is less harmful to the environment and more efficient in preserving copper's durability, particularly in saline environments. © 2024 The Author(s)
Files in This Item
Appears in
Collections
COLLEGE OF ENGINEERING SCIENCES > MAJOR IN ARCHITECTURAL ENGINEERING > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Lee, Han Seung photo

Lee, Han Seung
ERICA 공학대학 (MAJOR IN ARCHITECTURAL ENGINEERING)
Read more

Altmetrics

Total Views & Downloads

BROWSE