Differential Evolution with an Evolution Path: A DEEP Evolutionary Algorithm
- Authors
- Li, Yuan-Long; Zhan, Zhi-Hui; Gong, Yue-Jiao; Chen, Wei-Neng; Zhang, Jun; Li, Yun
- Issue Date
- Sep-2015
- Publisher
- IEEE Advancing Technology for Humanity
- Keywords
- Cumulative learning; differential evolution (DE); evolution path (EP); evolutionary computation
- Citation
- IEEE Transactions on Cybernetics, v.45, no.9, pp 1798 - 1810
- Pages
- 13
- Indexed
- SCI
SCIE
SCOPUS
- Journal Title
- IEEE Transactions on Cybernetics
- Volume
- 45
- Number
- 9
- Start Page
- 1798
- End Page
- 1810
- URI
- https://scholarworks.bwise.kr/erica/handle/2021.sw.erica/118513
- DOI
- 10.1109/TCYB.2014.2360752
- ISSN
- 2168-2267
2168-2275
- Abstract
- Utilizing cumulative correlation information already existing in an evolutionary process, this paper proposes a predictive approach to the reproduction mechanism of new individuals for differential evolution (DE) algorithms. DE uses a distributed model (DM) to generate new individuals, which is relatively explorative, whilst evolution strategy (ES) uses a centralized model (CM) to generate offspring, which through adaptation retains a convergence momentum. This paper adopts a key feature in the CM of a covariance matrix adaptation ES, the cumulatively learned evolution path (EP), to formulate a new evolutionary algorithm (EA) framework, termed DEEP, standing for DE with an EP. Without mechanistically combining two CM and DM based algorithms together, the DEEP framework offers advantages of both a DM and a CM and hence substantially enhances performance. Under this architecture, a self-adaptation mechanism can be built inherently in a DEEP algorithm, easing the task of predetermining algorithm control parameters. Two DEEP variants are developed and illustrated in the paper. Experiments on the CEC' 13 test suites and two practical problems demonstrate that the DEEP algorithms offer promising results, compared with the original DEs and other relevant state-of-the-art EAs.
- Files in This Item
-
Go to Link
- Appears in
Collections - COLLEGE OF ENGINEERING SCIENCES > SCHOOL OF ELECTRICAL ENGINEERING > 1. Journal Articles

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.