Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

규칙기반 데이터 증강기법을 활용한 한국어 증상발화 데이터 구축Construction of Korean symptom articulation data using rule-based data augmentation technique

Other Titles
Construction of Korean symptom articulation data using rule-based data augmentation technique
Authors
전성원이동준이동호
Issue Date
May-2023
Publisher
정보처리학회
Citation
2023 춘계 정보처리학회, pp 1 - 3
Pages
3
Indexed
OTHER
Journal Title
2023 춘계 정보처리학회
Start Page
1
End Page
3
URI
https://scholarworks.bwise.kr/erica/handle/2021.sw.erica/118952
Abstract
건강정보 검색 요구가 증가하면서 다양한 건강정보 검색 서비스가 제공되고 있다. 하지만 최근의 건강 정보 검색 서비스는 정형화 된 전문적인 의료정보와 그 해석을 제공하기 때문에 사용자는 이러한 정보를 스스로 이해하여 원하는 건강정보를 검색해야 한다. 사용자의 검색 피로를 줄이고 원하는 정보를 정확하게 얻을 수 있는 건강정보 검색 시스템 개발을 위하여 사용자의 비의료적 표현인 한국어 증상발화 데이터 구축이 선행되어야 한다. 이러한 데이터 구축은 많은 시간과 비용이 필요하기 때문에 이를 줄이기 위한 규칙기반 데이터 증강기법을 제시하고, 이를 활용하여 한국어 증상발화 데이터를 증강하였다. 증강된 데이터의 유효성을 보이기 위하여 KoBERT 기반의 증상분류 실험을 진행하였으며, 증강된 데이터가 그 전의 데이터보다 F1 스코어가 더 높음을 확인할 수 있었다.
Files in This Item
Go to Link
Appears in
Collections
COLLEGE OF COMPUTING > DEPARTMENT OF ARTIFICIAL INTELLIGENCE > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Lee, Dong Ho photo

Lee, Dong Ho
ERICA 소프트웨어융합대학 (DEPARTMENT OF ARTIFICIAL INTELLIGENCE)
Read more

Altmetrics

Total Views & Downloads

BROWSE