Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Low temperature crystallization of atomic-layer-deposited SrTiO3 films with an extremely low equivalent oxide thickness of sub-0.4 nmopen access

Authors
Chung, Hong KeunJeon, JihoonKim, HanJang, MyoungsuKim, Sung-ChulWon, Sung OkBaek, In-HwanChung, Yoon JangHan, Jeong HwanCho, Sung HaengPark, Tae JooKim, Seong Keun
Issue Date
Aug-2024
Publisher
Elsevier B.V.
Keywords
Atomic layer deposition; DRAM capacitor; Equivalent oxide thickness; SrTiO<sub>3</sub>
Citation
Applied Surface Science, v.664, pp 1 - 7
Pages
7
Indexed
SCIE
SCOPUS
Journal Title
Applied Surface Science
Volume
664
Start Page
1
End Page
7
URI
https://scholarworks.bwise.kr/erica/handle/2021.sw.erica/119057
DOI
10.1016/j.apsusc.2024.160243
ISSN
0169-4332
1873-5584
Abstract
Despite SrTiO3(STO) possessing a high dielectric constant, its application as a capacitor dielectric in dynamic random-access memory(DRAM) capacitors faces challenges due to the high-temperature annealing for crystallization, its compositional inhomogeneity, and the high leakage currents of STO films. To address these issues, we employ atomic layer deposition(ALD) of STO films onto Pt substrates at elevated temperatures(340–380 °C). The use of low-reactivity Pt electrodes effectively mitigates the initial growth of excess Sr, ensuring enhanced compositional uniformity along the film growth direction. Coupled with ALD at high temperatures, this approach facilitates the crystallization of STO films in the as-grown state, further enhancing the crystallinity with increasing film thickness. Subsequent low-temperature post-deposition annealing (PDA) at 400 and 500 °C achieves full crystallization. This process results in a remarkable increase in the dielectric constant, reaching approximately 150. Furthermore, the absence of microcracks after PDA, attributed to the formation of adequately dense films, contributes to substantially improved dielectric properties. Consequently, these STO films exhibit an exceptionally low equivalent oxide thickness of 0.34 nm coupled with an ultralow leakage current of 3.7 × 10−8 A/cm2 at an operation voltage of 0.8 V, promising for advancing DRAM capacitors. This study presents a pathway for the sustainable scaling of DRAMs, addressing challenges in ALD-grown STO films. © 2024 The Author(s)
Files in This Item
Go to Link
Appears in
Collections
COLLEGE OF ENGINEERING SCIENCES > DEPARTMENT OF MATERIALS SCIENCE AND CHEMICAL ENGINEERING > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Park, Tae Joo photo

Park, Tae Joo
ERICA 공학대학 (DEPARTMENT OF MATERIALS SCIENCE AND CHEMICAL ENGINEERING)
Read more

Altmetrics

Total Views & Downloads

BROWSE