Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

First demonstration of 2T0C-FeDRAM: a-ITZO FET and double gate a-ITZO/a-IGZO FeFET with a record-long multibit retention time of >4-bit and >2000 s

Authors
Noh, Tae HyeonChen, SiminKim, Hyo-BaeJin, TaewonPark, Seoung MinAn, Seong UiSun, XinkaiKim, JaekyunHan, Jae-HoonAhn, Ji-HoonAhn, Dae-HwanKim, Younghyun
Issue Date
Aug-2024
Publisher
Royal Society of Chemistry
Citation
Nanoscale, v.16, no.35, pp 1 - 10
Pages
10
Indexed
SCIE
SCOPUS
Journal Title
Nanoscale
Volume
16
Number
35
Start Page
1
End Page
10
URI
https://scholarworks.bwise.kr/erica/handle/2021.sw.erica/120361
DOI
10.1039/d4nr02393e
ISSN
2040-3364
2040-3372
Abstract
Conventional DRAM, consisting of one transistor and one capacitor (1T1C), requires periodic data refresh processes due to its limited retention time and data-destructive read operation. Here, we propose and demonstrate a novel 3D-DRAM memory scheme available with a single transistor and a single ferroelectric field-effect transistor (FeFET) DRAM (2T0C-FeDRAM), which offers extended retention time and non-destructive read operation. This architecture uses a back-end-of-line (BEOL)-compatible amorphous oxide semiconductor (AOS) that is suitable for increasing DRAM cell density. Notably, the device structures of a double gate a-ITZO/a-IGZO FeFET, used for data storage and reading, are engineered to achieve an enlarged memory window (MW) of 1.5 V and a prolonged retention time of 104 s. This is accomplished by a double gate and an a-ITZO/a-IGZO heterostructure channel to enable efficient polarization control in hafnium-zirconium oxide (HZO) layers. We present successful program/erase operations of the double gate a-ITZO/a-IGZO FeFET through incremental step pulse programming (ISPP), demonstrating multi-level states with remarkable retention characteristics. Most importantly, we perform 2T0C-FeDRAM operations by electrically connecting the double gate a-ITZO/a-IGZO FeFET and the a-ITZO FET. Leveraging the impressive performance of the double gate a-ITZO/a-IGZO FeFET technology, we have effectively showcased an exceptionally record-long retention time exceeding 2000 s and 4-bit multi-level states, positioning it as a robust contender among emerging memory solutions in the era of artificial intelligence.
Files in This Item
Go to Link
Appears in
Collections
COLLEGE OF SCIENCE AND CONVERGENCE TECHNOLOGY > DEPARTMENT OF PHOTONICS AND NANOELECTRONICS > 1. Journal Articles
COLLEGE OF ENGINEERING SCIENCES > DEPARTMENT OF MATERIALS SCIENCE AND CHEMICAL ENGINEERING > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Kim, Young hyun photo

Kim, Young hyun
ERICA 첨단융합대학 (ERICA 반도체·디스플레이공학전공)
Read more

Altmetrics

Total Views & Downloads

BROWSE