Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Effect of ultra-thin ZnS passivation using ALD technique on the performance of heterojunction solar cells

Full metadata record
DC Field Value Language
dc.contributor.authorSardar, Waseem-
dc.contributor.authorKhan, Junaid-
dc.contributor.authorAli, Gohar-
dc.contributor.authorSami, Abdul-
dc.contributor.authorAhmad, Sarfraz-
dc.contributor.authorAwan, Dawar-
dc.contributor.authorNawaz, Ahmad-
dc.contributor.authorPark, Tae Joo-
dc.date.accessioned2024-12-05T06:00:37Z-
dc.date.available2024-12-05T06:00:37Z-
dc.date.issued2024-11-
dc.identifier.issn0925-3467-
dc.identifier.issn1873-1252-
dc.identifier.urihttps://scholarworks.bwise.kr/erica/handle/2021.sw.erica/121181-
dc.description.abstractHybrid solar cells (HSCs) using poly (3,4-ethylenedioxy-thiophene) polystyrene sulfonate (PEDOT:PSS) and n-silicon provide heterojunctions with the potential of light trapping, cost effectiveness, and high efficiency. However, charge recombination at rear interface hampers built-in potential and power conversion efficiency (PCE). Here, a superior, conformal, and uniform ultra-thin layer of Zinc sulfide (ZnS) is deposited on rear interface using atomic layer deposition (ALD) technique. The ALD-deposited ZnS thin layer serves as a passivation, electron conductive, and hole-blocking layer. The optimized HSCs exhibit a remarkable PCE of 12.37 % alongside a high open-circuit voltage of 0.625 V and a substantial fill factor of 71.5 %. These advancements stem from enhanced back junction quality between n-Si and electrode. The outcomes demonstrate an effective suppression of charge recombination and enhanced charge transfer facilitated by ALD-deposited ZnS thin layer, resulting an improved photovoltaic performance. © 2024 Elsevier B.V.-
dc.format.extent5-
dc.language영어-
dc.language.isoENG-
dc.publisherElsevier B.V.-
dc.titleEffect of ultra-thin ZnS passivation using ALD technique on the performance of heterojunction solar cells-
dc.typeArticle-
dc.publisher.location네델란드-
dc.identifier.doi10.1016/j.optmat.2024.116375-
dc.identifier.scopusid2-s2.0-85208168949-
dc.identifier.wosid001355436500001-
dc.identifier.bibliographicCitationOptical Materials, v.157, pp 1 - 5-
dc.citation.titleOptical Materials-
dc.citation.volume157-
dc.citation.startPage1-
dc.citation.endPage5-
dc.type.docTypeArticle-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaOptics-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryOptics-
dc.subject.keywordPlusEFFICIENCY-
dc.subject.keywordPlusSILICON-
dc.subject.keywordPlusLAYER-
dc.subject.keywordAuthorHeterojunction solar cells-
dc.subject.keywordAuthorSurface passivation & recombination barrier layer-
dc.subject.keywordAuthorZnS by ALD technique-
dc.identifier.urlhttps://www.sciencedirect.com/science/article/pii/S0925346724015581?via%3Dihub-
Files in This Item
Go to Link
Appears in
Collections
COLLEGE OF ENGINEERING SCIENCES > DEPARTMENT OF MATERIALS SCIENCE AND CHEMICAL ENGINEERING > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Park, Tae Joo photo

Park, Tae Joo
ERICA 첨단융합대학 (ERICA 신소재·반도체공학전공)
Read more

Altmetrics

Total Views & Downloads

BROWSE