Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Raspberry-like Gold Nanoparticle-Decorated Titania Nanorods for Plasmon-Enhanced Photoelectrochemical Oxygen Evolution

Authors
Rosyadi, Anisa FitrianiNguyen, Anh NgocYoo, Hyojong
Issue Date
Apr-2025
Publisher
American Chemical Society
Keywords
gold nanoparticles; photoanode; photoelectrochemical water splitting; raspberry-like morphology; surface plasmon resonance; titania nanorods
Citation
ACS Applied Energy Materials, v.8, no.8, pp 5431 - 5441
Pages
11
Indexed
SCIE
SCOPUS
Journal Title
ACS Applied Energy Materials
Volume
8
Number
8
Start Page
5431
End Page
5441
URI
https://scholarworks.bwise.kr/erica/handle/2021.sw.erica/125193
DOI
10.1021/acsaem.5c00474
ISSN
2574-0962
2574-0962
Abstract
The development of efficient photoelectrochemical (PEC) water splitting systems for the oxygen evolution reaction is essential for realizing sustainable hydrogen fuel production. Among the various strategies for enhancing PEC cell performance, plasmonic nanostructures, particularly gold nanoparticles, have emerged as highly promising candidates for improving the efficiency of photoanodes. Herein, we report the fabrication of a photoanode architecture consisting of raspberry-like gold nanoparticles (Au RLNPs) incorporated into hydrothermally synthesized TiO2 nanorod arrays on a fluorine-doped tin oxide substrate (Au RLNP/TiO2||FTO) for PEC water splitting application. The Au RLNPs, synthesized via a facile, single-step solution-phase approach, exhibit a distinctive morphology that gives rise to a significantly red-shifted surface plasmon resonance, thereby enhancing visible light harvesting and promoting charge carrier generation. As a result, the Au RLNP/TiO2||FTO photoanode demonstrates a remarkable photocurrent density of 2.18 mA·cm-2 at 1.23 VRHE under AM 1.5G illumination. These findings underscore the substantial potential of the unique photoanode architecture for advancing the development of high-performance PEC water splitting systems. © 2025 American Chemical Society.
Files in This Item
Go to Link
Appears in
Collections
COLLEGE OF ENGINEERING SCIENCES > ETC > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Yoo, Hyo jong photo

Yoo, Hyo jong
ERICA 공학대학 (ERICA 배터리소재화학공학과)
Read more

Altmetrics

Total Views & Downloads

BROWSE