Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Interface-driven structural engineering of polypropylene carbonate-modified MgO composites for enhanced thermal conductivity

Full metadata record
DC Field Value Language
dc.contributor.authorLee, Ye-Ji-
dc.contributor.authorPark, Ji Young-
dc.contributor.authorCho, Hong-Baek-
dc.contributor.authorChoa, Yong-Ho-
dc.date.accessioned2025-05-16T08:01:01Z-
dc.date.available2025-05-16T08:01:01Z-
dc.date.issued2025-06-
dc.identifier.issn0266-3538-
dc.identifier.issn1879-1050-
dc.identifier.urihttps://scholarworks.bwise.kr/erica/handle/2021.sw.erica/125267-
dc.description.abstractAs electric vehicle (EV) batteries evolve toward higher energy densities, the demand for advanced thermal interface materials (TIMs) with high thermal conductivity (TC), superior mechanical strength, and anti-hydration properties becomes critical. TIMs must effectively dissipate heat while maintaining structural integrity under harsh thermal and humid conditions to ensure long-term reliability. In this study, we developed a high-performance epoxy composite incorporating thermally and chemically engineered magnesium oxide (MgO) fillers. The MgO was modified via thermal treatment and polypropylene carbonate (PPC) surface functionalization, forming a 365 nm hydrophobic coating layer while increasing the average grain size from 0.9 μm to 22 μm. This novel approach significantly mitigated Mg(OH)2 formation after 120 h in deionized water at 50 °C.Furthermore, the interface engineering between PPC-modified MgO and epoxy enhanced phonon transport while reducing interfacial resistance, leading to a 65 % increase in tensile stress and a TC enhancement from 1.192 W/mK to 2.036 W/mK. By optimizing the high-density packaging (HDP) process, we achieved an unprecedented TC of 9.22 W/mK at a filler content of 75.1 vol%, surpassing conventional epoxy-based TIMs. This study demonstrates a synergistic strategy combining grain boundary engineering, interfacial optimization, and dense filler packing to develop next-generation TIMs. © 2025 Elsevier Ltd-
dc.format.extent9-
dc.language영어-
dc.language.isoENG-
dc.publisherElsevier Ltd-
dc.titleInterface-driven structural engineering of polypropylene carbonate-modified MgO composites for enhanced thermal conductivity-
dc.typeArticle-
dc.publisher.location영국-
dc.identifier.doi10.1016/j.compscitech.2025.111177-
dc.identifier.scopusid2-s2.0-105002005848-
dc.identifier.wosid001469793900001-
dc.identifier.bibliographicCitationComposites Science and Technology, v.266, no.16, pp 1 - 9-
dc.citation.titleComposites Science and Technology-
dc.citation.volume266-
dc.citation.number16-
dc.citation.startPage1-
dc.citation.endPage9-
dc.type.docTypeArticle-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalWebOfScienceCategoryMaterials Science, Composites-
dc.subject.keywordPlusMECHANICAL-PROPERTIES-
dc.subject.keywordPlusSURFACE MODIFICATION-
dc.subject.keywordPlusALUMINUM NITRIDE-
dc.subject.keywordPlusPOLYMER-MATRIX-
dc.subject.keywordPlusPOLYCARBONATE-
dc.subject.keywordPlusPERFORMANCE-
dc.subject.keywordAuthorEpoxy matrix composites-
dc.subject.keywordAuthorMagnesium oxide-
dc.subject.keywordAuthorPolypropylene carbonate-
dc.subject.keywordAuthorThermal conductivity-
dc.subject.keywordAuthorThermal interface materials-
dc.identifier.urlhttps://www.sciencedirect.com/science/article/pii/S0266353825001459?via%3Dihub-
Files in This Item
Go to Link
Appears in
Collections
ETC > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Hong-Baek, Cho photo

Hong-Baek, Cho
ERICA 첨단융합대학 (ERICA 신소재·반도체공학전공)
Read more

Altmetrics

Total Views & Downloads

BROWSE