Interface-driven structural engineering of polypropylene carbonate-modified MgO composites for enhanced thermal conductivity
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Lee, Ye-Ji | - |
dc.contributor.author | Park, Ji Young | - |
dc.contributor.author | Cho, Hong-Baek | - |
dc.contributor.author | Choa, Yong-Ho | - |
dc.date.accessioned | 2025-05-16T08:01:01Z | - |
dc.date.available | 2025-05-16T08:01:01Z | - |
dc.date.issued | 2025-06 | - |
dc.identifier.issn | 0266-3538 | - |
dc.identifier.issn | 1879-1050 | - |
dc.identifier.uri | https://scholarworks.bwise.kr/erica/handle/2021.sw.erica/125267 | - |
dc.description.abstract | As electric vehicle (EV) batteries evolve toward higher energy densities, the demand for advanced thermal interface materials (TIMs) with high thermal conductivity (TC), superior mechanical strength, and anti-hydration properties becomes critical. TIMs must effectively dissipate heat while maintaining structural integrity under harsh thermal and humid conditions to ensure long-term reliability. In this study, we developed a high-performance epoxy composite incorporating thermally and chemically engineered magnesium oxide (MgO) fillers. The MgO was modified via thermal treatment and polypropylene carbonate (PPC) surface functionalization, forming a 365 nm hydrophobic coating layer while increasing the average grain size from 0.9 μm to 22 μm. This novel approach significantly mitigated Mg(OH)2 formation after 120 h in deionized water at 50 °C.Furthermore, the interface engineering between PPC-modified MgO and epoxy enhanced phonon transport while reducing interfacial resistance, leading to a 65 % increase in tensile stress and a TC enhancement from 1.192 W/mK to 2.036 W/mK. By optimizing the high-density packaging (HDP) process, we achieved an unprecedented TC of 9.22 W/mK at a filler content of 75.1 vol%, surpassing conventional epoxy-based TIMs. This study demonstrates a synergistic strategy combining grain boundary engineering, interfacial optimization, and dense filler packing to develop next-generation TIMs. © 2025 Elsevier Ltd | - |
dc.format.extent | 9 | - |
dc.language | 영어 | - |
dc.language.iso | ENG | - |
dc.publisher | Elsevier Ltd | - |
dc.title | Interface-driven structural engineering of polypropylene carbonate-modified MgO composites for enhanced thermal conductivity | - |
dc.type | Article | - |
dc.publisher.location | 영국 | - |
dc.identifier.doi | 10.1016/j.compscitech.2025.111177 | - |
dc.identifier.scopusid | 2-s2.0-105002005848 | - |
dc.identifier.wosid | 001469793900001 | - |
dc.identifier.bibliographicCitation | Composites Science and Technology, v.266, no.16, pp 1 - 9 | - |
dc.citation.title | Composites Science and Technology | - |
dc.citation.volume | 266 | - |
dc.citation.number | 16 | - |
dc.citation.startPage | 1 | - |
dc.citation.endPage | 9 | - |
dc.type.docType | Article | - |
dc.description.isOpenAccess | N | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.relation.journalResearchArea | Materials Science | - |
dc.relation.journalWebOfScienceCategory | Materials Science, Composites | - |
dc.subject.keywordPlus | MECHANICAL-PROPERTIES | - |
dc.subject.keywordPlus | SURFACE MODIFICATION | - |
dc.subject.keywordPlus | ALUMINUM NITRIDE | - |
dc.subject.keywordPlus | POLYMER-MATRIX | - |
dc.subject.keywordPlus | POLYCARBONATE | - |
dc.subject.keywordPlus | PERFORMANCE | - |
dc.subject.keywordAuthor | Epoxy matrix composites | - |
dc.subject.keywordAuthor | Magnesium oxide | - |
dc.subject.keywordAuthor | Polypropylene carbonate | - |
dc.subject.keywordAuthor | Thermal conductivity | - |
dc.subject.keywordAuthor | Thermal interface materials | - |
dc.identifier.url | https://www.sciencedirect.com/science/article/pii/S0266353825001459?via%3Dihub | - |
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.
55 Hanyangdeahak-ro, Sangnok-gu, Ansan, Gyeonggi-do, 15588, Korea+82-31-400-4269 sweetbrain@hanyang.ac.kr
COPYRIGHT © 2021 HANYANG UNIVERSITY. ALL RIGHTS RESERVED.
Certain data included herein are derived from the © Web of Science of Clarivate Analytics. All rights reserved.
You may not copy or re-distribute this material in whole or in part without the prior written consent of Clarivate Analytics.