Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Synergistic electrochemical properties of conductive additives with 1D-2D carbon networks

Authors
Lee, SeonOh, SeongjaePark, Chae-LinSong, Young-ChulKim, HyunKim, Keon JungKim, Kwang WonSong, Seo WonChoi, JoonmyungHu, XinghaoYoon, Ki RoLee, YoungbokKim, Shi Hyeong
Issue Date
May-2025
Publisher
ROYAL SOC CHEMISTRY
Citation
JOURNAL OF MATERIALS CHEMISTRY A, v.13, no.18, pp 12968 - 12976
Pages
9
Indexed
SCIE
SCOPUS
Journal Title
JOURNAL OF MATERIALS CHEMISTRY A
Volume
13
Number
18
Start Page
12968
End Page
12976
URI
https://scholarworks.bwise.kr/erica/handle/2021.sw.erica/125375
DOI
10.1039/d4ta07697d
ISSN
2050-7488
2050-7496
Abstract
The demand for high energy density lithium-ion batteries (LIBs) has increased due to the miniaturization of portable electronic devices. To enhance the energy density of these batteries, advancements in cathode and anode materials are essential, as their performance is currently limited by low electronic conductivity and poor dispersion efficiency. Therefore, this study proposes a composite conductive additive consisting of carbon nanoscrolls (CNSs) and reduced graphene oxide (rGO) to create a graphene-based cathode network. CNSs prevent rGO aggregation, enhancing slurry dispensability, and the combination of 2D rGO and 1D CNSs forms efficient conductive networks. The composite conductive additive has the potential to increase capacity by up to eight times compared to Ketjenblack and offer better cycle stability than rGO alone. This demonstrates the potential of CNSs and rGO composites to improve the electrochemical properties of conductive materials.
Files in This Item
There are no files associated with this item.
Appears in
Collections
COLLEGE OF ENGINEERING SCIENCES > DEPARTMENT OF MECHANICAL ENGINEERING > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE