Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Exploring the adsorption characteristics of quinoline derivatives on iron via ab initio DFT simulations and COSMO-RS profiles

Authors
하산 르가즈이한승
Issue Date
Dec-2024
Publisher
ELSEVIER
Keywords
Corrosion Inhibition; COSMO-RS; Density Functional Theory; Density of states; Hydrogen Bond; Quinoline
Citation
JOURNAL OF MOLECULAR LIQUIDS, v.415, no.A, pp 1 - 14
Pages
14
Indexed
SCIE
SCOPUS
Journal Title
JOURNAL OF MOLECULAR LIQUIDS
Volume
415
Number
A
Start Page
1
End Page
14
URI
https://scholarworks.bwise.kr/erica/handle/2021.sw.erica/125526
DOI
10.1016/j.molliq.2024.126326
ISSN
0167-7322
1873-3166
Abstract
Quinoline derivatives have been the subject of extensive research due to their excellent electronic properties and wide range of applications. This study conducts a comprehensive computational examination of the adsorption properties of substituted quinoline derivatives on Fe(110) surfaces. Four specific compounds, namely 2-amino-7-hydroxy-4-phenyl-1,4-dihydroquinoline-3-carbonitrile (QN1), 2-amino-7-hydroxy-4-(p-tolyl)-1,4-dihydroquinoline-3-carbonitrile (QN2), 2-amino-7-hydroxy-4-(4-methoxyphenyl)-1,4-dihydroquinoline-3-carbonitrile (QN3), and 2-amino-4-(4-(dimethylamino)phenyl)-7-hydroxy-1,4-dihydroquinoline-3-carbonitrile (QN4) were investigated using first-principles density functional theory (DFT) calculations along with COSMO-RS analysis for solvation properties. Our results revealed that the presence of functional groups significantly influence the adsorption strength on Fe(110) surfaces. Quinoline molecules have adsorbed on the iron surface through complex mechanisms involving physical interactions and charge transfer. Specifically, QN1 and QN4 showed strong physical interactions with iron atoms while QN2 and QN3 exhibited high affinity to coordinate with Fe atoms. The stability of coordinated quinolines was enhanced by a notable charge redistribution and bond formation as observed via projected density of states (PDOS). On the other hand, electron density difference (EDD) and electron localization function (ELF) iso-surfaces highlighted the critical role of van der Waals interactions, predominantly influenced by nitrogen atoms, in stabilizing the adsorbed molecules. The COSMO-RS analysis elucidated the solvation characteristics, emphasizing the importance of hydrogen bond donor (HBD) and hydrogen bond acceptor (HBA) in the interaction of quinolines with water molecules. Overall, this study provides crucial insights into the molecular mechanisms underlying the corrosion inhibition properties of quinoline derivatives, emphasizing the influence of functional groups and solvation effects on adsorption behavior and stability.
Files in This Item
Go to Link
Appears in
Collections
COLLEGE OF ENGINEERING SCIENCES > MAJOR IN ARCHITECTURAL ENGINEERING > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Lgaz, Hassane photo

Lgaz, Hassane
ERICA부총장 한양인재개발원 (ERICA 창의융합교육원)
Read more

Altmetrics

Total Views & Downloads

BROWSE