Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

High performance soft magnetic composites with optimized Fe3O4 coating layer using rotary reactor-based sputteringopen access

Authors
Choi, YongheumKim, YujinMin, SaenaKwon, DohunLee, Min-WooKim, Hwi-JunPark, Tae JooPark, Young Min
Issue Date
Sep-2025
Publisher
Elsevier Ltd
Keywords
Insulation layer coating; Interfacial diffusion; Power loss reduction; Rotary reactor-based sputtering; Soft magnetic composites
Citation
Materials and Design, v.257, pp 1 - 9
Pages
9
Indexed
SCIE
SCOPUS
Journal Title
Materials and Design
Volume
257
Start Page
1
End Page
9
URI
https://scholarworks.bwise.kr/erica/handle/2021.sw.erica/126301
DOI
10.1016/j.matdes.2025.114428
ISSN
0264-1275
1873-4197
Abstract
Soft magnetic composites with low power loss and high magnetic permeability are essential for energy-efficient and high-performance devices, as their applications have rapidly expanded. In this study, we propose a rotary reactor-based sputtering for powder coating technique employing a rotary reactor to achieve a uniform Fe3O4 coating layer with a precisely controlled thickness on FeSiBCr amorphous magnetic powder. By varying the Fe3O4 thickness from 15 to 50 nm, we optimized the microstructure to minimize power loss as well as enhance magnetic properties at high frequencies. As a result, the 15 nm-thick Fe3O4 coated powders exhibited a 73.5 % reduction in power loss compared to that of uncoated samples, with an improvement in effective permeability as much as 133.8 % of bare powders. The microstructural analysis also reveals that introduction of an amorphous Fe3O4 layer serves as an oxygen source leading to the formation of interfacial SiO2 layer, which plays an important role in reducing eddy current losses. This innovative sputtering technique on powder surfaces demonstrates a significant improvement over traditional coating methods, providing a scalable solution for high-performance soft magnetic composites in electronic and industrial applications. © 2025 The Author(s)
Files in This Item
Go to Link
Appears in
Collections
ETC > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Park, Tae Joo photo

Park, Tae Joo
ERICA 첨단융합대학 (ERICA 신소재·반도체공학전공)
Read more

Altmetrics

Total Views & Downloads

BROWSE