Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Road vanishing point detection using weber adaptive local filter and salient-block-wise weighted soft voting

Authors
Fan, XueShin, Hyunchul
Issue Date
Sep-2016
Publisher
Institution of Engineering and Technology
Keywords
adaptive filters; roads; image texture; traffic engineering computing; road vanishing point detection; weber adaptive local filter; salient-block-wise weighted soft voting; texture-based methods; pixel wise texture orientation estimation; voting map generation; computational complexity; road trails; road edges; vanishing point detection; pixel-wise voting scheme; pixel-wise texture orientations
Citation
IET Computer Vision, v.10, no.6, pp 503 - 512
Pages
10
Indexed
SCI
SCIE
SCOPUS
Journal Title
IET Computer Vision
Volume
10
Number
6
Start Page
503
End Page
512
URI
https://scholarworks.bwise.kr/erica/handle/2021.sw.erica/13071
DOI
10.1049/iet-cvi.2015.0313
ISSN
1751-9632
1751-9640
Abstract
In this study, a novel and efficient technique is proposed for road vanishing point detection in challenging scenes. Currently, most existing texture-based methods detect the vanishing point using pixel wise texture orientation estimation and voting map generation, which suffers from high computational complexity. Since only road trails (e.g. road edges, ruts, and tire tracks) would contribute informative votes to vanishing point detection, the Weber adaptive local filter is proposed to distinguish road trails from background noise, which is envisioned to reduce the workload and to eliminate uninformative votes introduced by the background noise. Furthermore, instead of using the conventional pixel-wise voting scheme, the salient-block-wise weighted soft voting is developed to eliminate most of the noise votes introduced by incorrectly estimated pixel-wise texture orientations, and to further reduce the computation time of voting stage as well. The experimental results on the benchmark dataset demonstrate that the proposed method shows superior performance. The authors' method is about ten times faster in detection speed and outperforms by 3.6% in detection accuracy, when compared with a well-known state-of-the-art approach.
Files in This Item
Go to Link
Appears in
Collections
COLLEGE OF ENGINEERING SCIENCES > SCHOOL OF ELECTRICAL ENGINEERING > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE