Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Bump-Type Foil Bearings and Flexure Pivot Tilting Pad Bearings for Oil-Free Automotive Turbochargers: Highlights in Rotordynamic Performance

Authors
Ryu, KeunAshton, Zachary
Issue Date
Apr-2016
Publisher
American Society of Mechanical Engineers
Citation
Journal of Engineering for Gas Turbines and Power, v.138, no.4, pp 1 - 10
Pages
10
Indexed
SCI
SCIE
SCOPUS
Journal Title
Journal of Engineering for Gas Turbines and Power
Volume
138
Number
4
Start Page
1
End Page
10
URI
https://scholarworks.bwise.kr/erica/handle/2021.sw.erica/14106
DOI
10.1115/1.4031440
ISSN
0742-4795
1528-8919
Abstract
Oil-free turbochargers (TCs) require gas bearings in compact units of enhanced rotordynamic stability, mechanical efficiency, and improved reliability with reduced maintenance costs compared with oil-lubricated bearings. Implementation of gas bearings into automotive TCs requires careful thermal management with accurate measurements verifying model predictions. Gas foil bearings (GFBs) are customarily used in oil-free microturbomachinery because of their distinct advantages including tolerance to shaft misalignment and centrifugal/thermal growth, and large damping and load capacity compared with rigid surface gas bearings. Flexure pivot tilting pad bearings (FPTPBs) are widely used in high-performance turbomachinery since they offer little or no cross-coupled stiffnesses with enhanced rotordynamic stability. The paper details the rotordynamic performance and temperature characteristics of two prototype oil-free TCs; one supported on foil journal and thrust bearings and the other one is supported on FPTP journal bearings and foil thrust bearings of identical sizes (outer diameter (OD) and inner diameter (ID)) with the same aerodynamic components. The tests of the oil-free TCs, each consisting of a hollow rotor (similar to 0.4 kg and similar to 23mm in OD at the bearing locations), are performed for various imbalances in noise, vibration, and harshness (NVH; i.e., cold air driven rotordynamics rig) and gas stand test facilities up to 130 krpm. No forced cooling air flow streams are supplied to the test bearings and rotor. The measurements demonstrate the stable performance of the rotor-gas bearing systems in an ambient NVH test cell with cold forced air into the turbine inlet. Post-test inspection of the test FPTPGBs after the hot gas stand tests evidences seizure of the hottest bearing, thereby revealing a notable reduction in bearing clearance as the rotor temperature increases. The compliant FPTPGBs offer a sound solution for stable rotor support only at an ambient temperature condition while demonstrating less tolerance for shaft growth, centrifugal, and thermal, beyond its clearance. The current measurements give confidence in the present GFB technology for ready application into automotive TCs for passenger car and commercial vehicle applications with increased reliability.
Files in This Item
Go to Link
Appears in
Collections
COLLEGE OF ENGINEERING SCIENCES > DEPARTMENT OF MECHANICAL ENGINEERING > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Ryu, Keun photo

Ryu, Keun
ERICA 공학대학 (DEPARTMENT OF MECHANICAL ENGINEERING)
Read more

Altmetrics

Total Views & Downloads

BROWSE