Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Effect of particle size on various substrates for deposition of NiO film via nanoparticle deposition system

Authors
Kim, HyungsubYang, SeungkyuAhn, Sung-HoonLee, Caroline Sunyong
Issue Date
Feb-2016
Publisher
ELSEVIER SCIENCE SA
Keywords
Dry deposition; Particle; NiO; Size; Substrate; Mechanism
Citation
THIN SOLID FILMS, v.600, pp 109 - 118
Pages
10
Indexed
SCI
SCIE
SCOPUS
Journal Title
THIN SOLID FILMS
Volume
600
Start Page
109
End Page
118
URI
https://scholarworks.bwise.kr/erica/handle/2021.sw.erica/14532
DOI
10.1016/j.tsf.2016.01.031
ISSN
0040-6090
Abstract
We report the deposition mechanism of NiO particles using a nanoparticle deposition system. To understand the effects of particle size and substrates on the deposition, nano-, 100-nm-, sub-micro-, and micro-sized NiO particles were deposited on Si wafers, Ni-coated Si wafers, and fluorine-doped tin oxide (FTO)-coated glass. It was found that 100-nm- and nano-sized NiO particles were deposited, forming loosely compacted coating layers, by the breaking up of agglomerates, regardless of the type of substrate. In contrast, sub-micro-and micro-sized NiO particles formed dense and compact coating layers by deformation and fracturing on the Si and Ni-coated Si wafers. Moreover, sub-micro-and micro-sized NiO particles were not deposited on FTO glass; this was likely attributable to the NiO being harder than FTO glass and the micro-sized NiO particles would likely have rebounded on impact, resulting in no deposition. Thus, the deposition mechanism of NiO particles may be greatly related to the relative hardness difference between the NiO particles and the substrate. Moreover, it was found that different particle sizes resulted in different friction and mobility, based on response angle measurements, influencing the deposition mechanism(s), especially at the interface. When the particle size was greater than 100 nm, the deposition was due primarily to deformation and fracturing during the collision with the substrate. In particular, the 100-nm-sized NiO particles showed both mechanisms, a two-step process, with deformation or fracturing at the interface between the substrate and particles, followed by a loosely compacted coating layer forming, preserving the original particle shape. Thus, it was confirmed that the 100-nm-sized NiO particles were at or near a boundary for deposition mechanisms. The effects of particle size and substrate for dry deposition were explained successfully by assessing the deposition behavior using analytical tools. (C) 2016 Published by Elsevier B.V.
Files in This Item
Go to Link
Appears in
Collections
COLLEGE OF ENGINEERING SCIENCES > DEPARTMENT OF MATERIALS SCIENCE AND CHEMICAL ENGINEERING > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Lee, Sunyong Caroline photo

Lee, Sunyong Caroline
ERICA 첨단융합대학 (ERICA 신소재·반도체공학전공)
Read more

Altmetrics

Total Views & Downloads

BROWSE