Passivity Based Adaptive Control for Upper Extremity Assist Exoskeleton
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Khan, Abdul Manan | - |
dc.contributor.author | Yun, Deok-won | - |
dc.contributor.author | Ali, Mian Ashfaq | - |
dc.contributor.author | Zuhaib, Khalil Muhammad | - |
dc.contributor.author | Yuan, Chao | - |
dc.contributor.author | Iqbal, Junaid | - |
dc.contributor.author | Han, Jungsoo | - |
dc.contributor.author | Shin, Kyoosik | - |
dc.contributor.author | Han, Changsoo | - |
dc.date.accessioned | 2021-06-22T17:22:29Z | - |
dc.date.available | 2021-06-22T17:22:29Z | - |
dc.date.issued | 2016-02 | - |
dc.identifier.issn | 1598-6446 | - |
dc.identifier.issn | 2005-4092 | - |
dc.identifier.uri | https://scholarworks.bwise.kr/erica/handle/2021.sw.erica/14551 | - |
dc.description.abstract | Upper limb assist exoskeleton robot requires quantitative techniques to assess human motor function and generate command signal for robots to act in compliance with human motion. To asses human motor function, we present Desired Motion Intention (DMI) estimation algorithm using Muscle Circumference Sensor (MCS) and load cells. Here, MCS measures human elbow joint torque using human arm kinematics, biceps/triceps muscle model and physiological cross sectional area of these muscles whereas load cells play a compensatory role for the torque generated by shoulder muscles as these cells measure desire of shoulder muscles to move the arm and not the internal activity of shoulder muscles. Furthermore, damped least square algorithm is used to estimate Desired Motion Intention (DMI) from these torques. To track this estimated DMI, we have used passivity based adaptive control algorithm. This control techniques is particular useful to adapt modeling error of assist exoskeleton robot for different subjects. Proposed methodology is experimentally evaluated on seven degree of freedom upper limb assist exoskeleton. Results show that DMI is well estimated and tracked for assistance by the proposed control algorithm. | - |
dc.format.extent | 10 | - |
dc.language | 영어 | - |
dc.language.iso | ENG | - |
dc.publisher | INST CONTROL ROBOTICS & SYSTEMS, KOREAN INST ELECTRICAL ENGINEERS | - |
dc.title | Passivity Based Adaptive Control for Upper Extremity Assist Exoskeleton | - |
dc.type | Article | - |
dc.publisher.location | 대한민국 | - |
dc.identifier.doi | 10.1007/s12555-014-0250-x | - |
dc.identifier.scopusid | 2-s2.0-84957990167 | - |
dc.identifier.wosid | 000369704900030 | - |
dc.identifier.bibliographicCitation | INTERNATIONAL JOURNAL OF CONTROL AUTOMATION AND SYSTEMS, v.14, no.1, pp 291 - 300 | - |
dc.citation.title | INTERNATIONAL JOURNAL OF CONTROL AUTOMATION AND SYSTEMS | - |
dc.citation.volume | 14 | - |
dc.citation.number | 1 | - |
dc.citation.startPage | 291 | - |
dc.citation.endPage | 300 | - |
dc.type.docType | Article | - |
dc.identifier.kciid | ART002078006 | - |
dc.description.isOpenAccess | N | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.description.journalRegisteredClass | kci | - |
dc.relation.journalResearchArea | Automation & Control Systems | - |
dc.relation.journalWebOfScienceCategory | Automation & Control Systems | - |
dc.subject.keywordPlus | HUMAN-ROBOT INTERACTION | - |
dc.subject.keywordPlus | ARM EXOSKELETON | - |
dc.subject.keywordPlus | DESIGN | - |
dc.subject.keywordPlus | MODEL | - |
dc.subject.keywordAuthor | Adaptive control | - |
dc.subject.keywordAuthor | human robot interaction | - |
dc.subject.keywordAuthor | passivity based | - |
dc.subject.keywordAuthor | robot control | - |
dc.identifier.url | https://link.springer.com/article/10.1007/s12555-014-0250-x | - |
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.
55 Hanyangdeahak-ro, Sangnok-gu, Ansan, Gyeonggi-do, 15588, Korea+82-31-400-4269 sweetbrain@hanyang.ac.kr
COPYRIGHT © 2021 HANYANG UNIVERSITY. ALL RIGHTS RESERVED.
Certain data included herein are derived from the © Web of Science of Clarivate Analytics. All rights reserved.
You may not copy or re-distribute this material in whole or in part without the prior written consent of Clarivate Analytics.