Stable performance of Li-S battery: Engineering of Li2S smart cathode by reduction of multilayer graphene-embedded 2D-MoS2
- Authors
- Han,Joonghee; Jang, Hyungil; Thi, Bui Hoa; Jahn, Marcus; Ahn,Doyoung; Cho, Keumnam; Jun, Byeongsun; Lee, Sang Uck; Sabine, Schwarz; Michael, Stöger-Pollach; Whitmore,Karin; Sung,Myung-Mo.; Kutwade, Vishnu; Sharma, Ramphal; Han, Sung-Hwan
- Issue Date
- May-2021
- Publisher
- Elsevier BV
- Keywords
- 2D-MoS2 cathode; Li-S batteries; Li2S cathode; Multilayered graphene; Sulfur shuttle effects
- Citation
- Journal of Alloys and Compounds, v.862, pp 1 - 11
- Pages
- 11
- Indexed
- SCIE
SCOPUS
- Journal Title
- Journal of Alloys and Compounds
- Volume
- 862
- Start Page
- 1
- End Page
- 11
- URI
- https://scholarworks.bwise.kr/erica/handle/2021.sw.erica/1510
- DOI
- 10.1016/j.jallcom.2020.158031
- ISSN
- 0925-8388
1873-4669
- Abstract
- Lithium-sulfur (Li–S) batteries are considered promising candidates for next-generation energy storage devices due to their ultrahigh theoretical gravimetric energy density, cost-effectiveness, and environmental friendliness. However, the application of Li–S batteries remains challenging; mainly due to a lack of understanding of the complex chemical reactions and associated equilibria that occur in a working Li–S system. A new approach preparing graphene-based active cathode materials of Li-S battery with spatially confined lithium sulfides is reported. The starting graphene-embedded 2D-MoS2 was synthesized by a solvothermal method in organic solvents followed by the calcination of trapped organic solvent molecules at 800 °C to give graphene single sheets inside the 2D-MoS2 layers with 7 Å distance (MoS2-Gr-32.51). Then, it was electrochemically reduced/lithiated at potential 0.01 V vs Li+/Li generating metallic molybdenum and lithium sulfides. As a result, the structure of MoS2 multi-layers collapsed. The graphene multi-layer (ML-Graphene) was left behind and shut the lithium sulfides between the layers. The sizes of Li2Sn (n = 4–6) are bigger than the inter-layer distance of ML-Graphene, and the escape of sulfur/sulfides from the cathode into the electrolyte is physically blocked alleviating shuttle effects. The specific capacity of ML-Graphene/lithium sulfides cathode was high of 1209 mAh/gMoS2-Gr at 0.1 C (1 C = 670 mA/g). The ML-Graphene exhibited the remarkable lithium intercalation capability, and the theoretical calculation has been carried out to give 2231.4 mAh/g. Such high capacity was hybridized with the theoretical capacity of sulfur (1675 mAh/g), and the ML-Graphene composite with dichalcogenides (2D-MoS2) became a promising platform for the cathode of Li-S batteries. © 2020 Elsevier B.V.
- Files in This Item
-
Go to Link
- Appears in
Collections - COLLEGE OF SCIENCE AND CONVERGENCE TECHNOLOGY > DEPARTMENT OF CHEMICAL AND MOLECULAR ENGINEERING > 1. Journal Articles

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.