Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Modulated expression and enzymatic activity of the monogonont rotifer Brachionus koreanus Cu/Zn- and Mn-superoxide dismutase (SOD) in response to environmental biocides

Authors
Kim, Bo-MiLee, Jin WukSeo, Jung SooShin, Kyung-HoonRhee, Jae-SungLee, Jae-Seong
Issue Date
Feb-2015
Publisher
Pergamon Press Ltd.
Keywords
Monogonont rotifer; Brachionus koreanus; Superoxide dismutase; Biocides; Enzymatic activity
Citation
Chemosphere, v.120, pp.470 - 478
Indexed
SCIE
SCOPUS
Journal Title
Chemosphere
Volume
120
Start Page
470
End Page
478
URI
https://scholarworks.bwise.kr/erica/handle/2021.sw.erica/18872
DOI
10.1016/j.chemosphere.2014.08.042
ISSN
0045-6535
Abstract
Superoxide dismutases (SODS) are important antioxidant enzymes whose expression levels are often used as biomarkers for oxidative stress. To investigate the biomarker potential of the monogonont rotifer Brachionus koreanus SOD genes, the full-length Cu/Zn-SOD (Bk-Cu/Zn-SOD) and Mn-SOD (Bk-Mn-SOD) genes were cloned from genomic DNA and characterized. All amino acid residues involved in the formation of tertiary structure and metal binding in Bk-Cu/Zn-SOD and Bk-Mn-SOD were highly conserved across species. Phylogenetic analysis revealed that Bk-Mn-SOD, in particular, was closely clustered with mitochondrial Mn-SOD. Transcript analysis after exposure to six different biocides (alachlor, chlorpyrifos, dimethoate, endosulfan, lindane, and molinate) revealed that the transcriptional level of Bk-Cu/Zn-SOD was significantly increased in a dose-dependent manner. In contrast, the level of Bk-Mn-SOD transcript was significantly increased compared with control cells in response to chlorpyrifos, endosulfan, and molinate at their no observed effect concentrations (NOECs). However, exposure to alachlor, chlorpyrifos, and molinate significantly reduced the enzymatic activity of total SOD protein, while a decreased pattern was observed in all biocide treatments. Taken together, these results indicate that exposure to waterborne environmental biocides induces the transcription of Bk-Cu/Zn-SOD and Bk-Mn-SOD, but inhibits the enzymatic activity of Bk-SODs. These results contribute to our understanding of the modes of action of oxidative stress-mediating biocides on rotifer. (C) 2014 Elsevier Ltd. All rights reserved.
Files in This Item
Go to Link
Appears in
Collections
COLLEGE OF SCIENCE AND CONVERGENCE TECHNOLOGY > DEPARTMENT OF MARINE SCIENCE AND CONVERGENCE ENGINEERING > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Shin, Kyung Hoon photo

Shin, Kyung Hoon
COLLEGE OF SCIENCE AND CONVERGENCE TECHNOLOGY (DEPARTMENT OF MARINE SCIENCE AND CONVERGENCE ENGINEERING)
Read more

Altmetrics

Total Views & Downloads

BROWSE