Inspecting Method for Defective Casting Products with Convolutional Neural Network (CNN)
- Authors
- Thong Phi Nguyen; Choi, Seungho; Park, Sung-Jun; Park, Sung Hyuk; Yoon, Jonghun
- Issue Date
- Mar-2021
- Publisher
- KOREAN SOC PRECISION ENG
- Keywords
- Convolution neural network; Defect inspection; Casting product; Deep learning
- Citation
- INTERNATIONAL JOURNAL OF PRECISION ENGINEERING AND MANUFACTURING-GREEN TECHNOLOGY, v.8, no.2, pp 583 - 594
- Pages
- 12
- Indexed
- SCIE
SCOPUS
KCI
- Journal Title
- INTERNATIONAL JOURNAL OF PRECISION ENGINEERING AND MANUFACTURING-GREEN TECHNOLOGY
- Volume
- 8
- Number
- 2
- Start Page
- 583
- End Page
- 594
- URI
- https://scholarworks.bwise.kr/erica/handle/2021.sw.erica/1907
- DOI
- 10.1007/s40684-020-00197-4
- ISSN
- 2288-6206
2198-0810
- Abstract
- It is essential to conduct the quality control for gauranteeing sound products after finishing conventional manufacturing processes. Vision-based inpection system has been extensively applied to various industries linked with concept of the smart factory since it does not only enhance the inspecting accuracy, but also decrease the cost for the human inspection, substantially. This paper mainly concerns the development of the inspecting system for the casting products with supported by the convolutional neural network, which makes it possible to detect various types of defects such as blow hole, chipping, crack, and wash automatically. To obtain high accuracy in inspecting system, it does not only require sub-partitioning of the original images, but also apply multiple labeling according to the order of the sub-images and the existence of the defects. Performance of the proposed inspecting algorithm has been validated with the 400 casting products, in which it exhibits substantially high accuracy more than 98%, experimentally.
- Files in This Item
-
Go to Link
- Appears in
Collections - COLLEGE OF ENGINEERING SCIENCES > DEPARTMENT OF MECHANICAL ENGINEERING > 1. Journal Articles

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.