Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

New Wafer-Level High-Frequency Characterization of Coupled Transmission Lines

Full metadata record
DC Field Value Language
dc.contributor.authorLee, Donghun-
dc.contributor.authorKim, Joonhyun-
dc.contributor.authorEo, Yungseon-
dc.date.accessioned2021-06-22T09:25:15Z-
dc.date.available2021-06-22T09:25:15Z-
dc.date.issued2019-12-
dc.identifier.issn0018-9480-
dc.identifier.issn1557-9670-
dc.identifier.urihttps://scholarworks.bwise.kr/erica/handle/2021.sw.erica/2019-
dc.description.abstractIn this article, a new experimental characterization technique for coupled transmission lines is presented. Three specific experimental test patterns (E-, F-, and G-type structures) that can individually characterize the electromagnetic coupling of two coupled lines are developed and fabricated on the same wafer using a 0.18-CMOS process. Since the devised test patterns are two-port networks, well-established two-port network characterization techniques can be exploited. Transmission line model parameters (i.e., propagation constants and characteristic impedances) associated with the three two-port test patterns can be directly determined from the measured S-parameters, followed by circuit model parameters () for two coupled lines. Without rigorous equipment calibration and deembedding parasitic effects, experimental characterizations for two coupled lines using four-port network S-parameter measurements may yield physically ambiguous data above 10 GHz due to the parasitic resonances, whereas the proposed technique can determine stable and accurate network parameters over a broad frequency band. To further support the validity of the proposed technique, they are compared with data using 3-D numerical calculations and low-frequency capacitance measurements.-
dc.format.extent8-
dc.language영어-
dc.language.isoENG-
dc.publisherIEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC-
dc.titleNew Wafer-Level High-Frequency Characterization of Coupled Transmission Lines-
dc.typeArticle-
dc.publisher.location미국-
dc.identifier.doi10.1109/TMTT.2019.2944601-
dc.identifier.scopusid2-s2.0-85077822109-
dc.identifier.wosid000524945800005-
dc.identifier.bibliographicCitationIEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, v.67, no.12, pp 4674 - 4681-
dc.citation.titleIEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES-
dc.citation.volume67-
dc.citation.number12-
dc.citation.startPage4674-
dc.citation.endPage4681-
dc.type.docTypeArticle-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClasssci-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaEngineering-
dc.relation.journalWebOfScienceCategoryEngineering, Electrical & Electronic-
dc.subject.keywordPlusMULTIMODE TRL-
dc.subject.keywordPlusINTERCONNECT-
dc.subject.keywordAuthorCharacteristic impedance-
dc.subject.keywordAuthordeembedding-
dc.subject.keywordAuthorpropagation constant-
dc.subject.keywordAuthorS-parameters-
dc.subject.keywordAuthortransmission lines-
dc.identifier.urlhttps://ieeexplore.ieee.org/document/8879682-
Files in This Item
Go to Link
Appears in
Collections
COLLEGE OF ENGINEERING SCIENCES > SCHOOL OF ELECTRICAL ENGINEERING > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher EO, YUNG SEON photo

EO, YUNG SEON
ERICA 공학대학 (SCHOOL OF ELECTRICAL ENGINEERING)
Read more

Altmetrics

Total Views & Downloads

BROWSE