Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Impact of deformed extreme-ultraviolet pellicle in terms of CD uniformity

Authors
Kim, I.-S.Yeung, M.Barouch, E.Oh, H.-K.
Issue Date
Jul-2015
Publisher
SPIE
Citation
Proceedings of SPIE - The International Society for Optical Engineering, v.9658
Indexed
SCOPUS
Journal Title
Proceedings of SPIE - The International Society for Optical Engineering
Volume
9658
URI
https://scholarworks.bwise.kr/erica/handle/2021.sw.erica/20560
DOI
10.1117/12.2197752
ISSN
0277-786X
Abstract
The usage of the extreme ultraviolet (EUV) pellicle is regarded as the solution for defect control since it can protect the mask from airborne debris. However some obstacles disrupt real-application of the pellicle such as structural weakness, thermal damage and so on. For these reasons, flawless fabrication of the pellicle is impossible. In this paper, we discuss the influence of deformed pellicle in terms of non-uniform intensity distribution and critical dimension (CD) uniformity. It was found that non-uniform intensity distribution is proportional to local tilt angle of pellicle and CD variation was linearly proportional to transmission difference. When we consider the 16 nm line and space pattern with dipole illumination (σ<inf>c</inf>=0.8, σ<inf>r</inf>=0.1, NA=0.33), the transmission difference (max-min) of 0.7 % causes 0.1 nm CD uniformity. Influence of gravity caused deflection to the aerial image is small enough to ignore. CD uniformity is less than 0.1 nm even for the current gap of 2 mm between mask and pellicle. However, heat caused EUV pellicle wrinkle might cause serious image distortion because a wrinkle of EUV pellicle causes a transmission loss variation as well as CD non-uniformity. In conclusion, local angle of a wrinkle, not a period or an amplitude of a wrinkle is a main factor to CD uniformity, and local angle of less than ∼270 mrad is needed to achieve 0.1 nm CD uniformity with 16 nm L/S pattern. © 2015 SPIE.
Files in This Item
Go to Link
Appears in
Collections
COLLEGE OF SCIENCE AND CONVERGENCE TECHNOLOGY > DEPARTMENT OF APPLIED PHYSICS > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE