Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Rolling element bearing fault diagnosis based on non-local means de-noising and empirical mode decomposition

Full metadata record
DC Field Value Language
dc.contributor.authorVan, Mien-
dc.contributor.authorKang, Hee-Jun-
dc.contributor.authorShin, Kyoo-Sik-
dc.date.accessioned2021-06-22T22:23:10Z-
dc.date.available2021-06-22T22:23:10Z-
dc.date.issued2014-11-
dc.identifier.issn1751-8822-
dc.identifier.issn1751-8830-
dc.identifier.urihttps://scholarworks.bwise.kr/erica/handle/2021.sw.erica/21505-
dc.description.abstractThe presence of faults in the bearings of rotating machinery is usually observed with impulses in the vibration signals. However, the vibration signals are generally non-stationary and usually contaminated by noise because of the compounded background noise present in the measuring device and the effect of interference from other machine elements. Therefore in order to enhance monitoring condition, the vibration signal needs to be properly de-noised before analysis. In this study, a novel fault diagnosis method for rolling element bearings is proposed based on a hybrid technique of non-local means (NLM) de-noising and empirical mode decomposition (EMD). An NLM which removes the noise with minimal signal distortion is first employed to eliminate or at least reduce the background noise present in the measuring device. This de-noised signal is then decomposed into a finite number of stationary intrinsic mode functions (IMF) to extract the impulsive fault features from the effect of interferences from other machine elements. Finally, envelope analyses are performed for IMFs to allow for easier detection of such characteristic fault frequencies. The results of simulated and real bearing vibration signal analyses show that the hybrid feature extraction technique of NLM de-noising, EMD and envelope analyses successfully extract impulsive features from noise signals.-
dc.format.extent8-
dc.language영어-
dc.language.isoENG-
dc.publisherINST ENGINEERING TECHNOLOGY-IET-
dc.titleRolling element bearing fault diagnosis based on non-local means de-noising and empirical mode decomposition-
dc.typeArticle-
dc.publisher.location영국-
dc.identifier.doi10.1049/iet-smt.2014.0023-
dc.identifier.scopusid2-s2.0-84918542307-
dc.identifier.wosid000346338500026-
dc.identifier.bibliographicCitationIET SCIENCE MEASUREMENT & TECHNOLOGY, v.8, no.6, pp 571 - 578-
dc.citation.titleIET SCIENCE MEASUREMENT & TECHNOLOGY-
dc.citation.volume8-
dc.citation.number6-
dc.citation.startPage571-
dc.citation.endPage578-
dc.type.docTypeArticle-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClasssci-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaEngineering-
dc.relation.journalWebOfScienceCategoryEngineering, Electrical & Electronic-
dc.subject.keywordPlusHILBERT-HUANG TRANSFORM-
dc.subject.keywordPlusSIGNALS-
dc.subject.keywordPlusCOMPONENTS-
dc.subject.keywordPlusSYSTEMS-
dc.subject.keywordPlusFailure analysis-
dc.subject.keywordPlusImage denoising-
dc.subject.keywordPlusRoller bearings-
dc.subject.keywordPlusVibration analysis-
dc.subject.keywordAuthorrolling bearings-
dc.subject.keywordAuthorfault diagnosis-
dc.subject.keywordAuthorsignal denoising-
dc.subject.keywordAuthorrolling element bearing-
dc.subject.keywordAuthorfault diagnosis-
dc.subject.keywordAuthornonlocal means-
dc.subject.keywordAuthorde-noising-
dc.subject.keywordAuthorempirical mode decomposition-
dc.subject.keywordAuthorminimal signal distortion-
dc.subject.keywordAuthorbackground noise-
dc.subject.keywordAuthorstationary intrinsic mode functions-
dc.subject.keywordAuthorimpulsive fault features-
dc.subject.keywordAuthorenvelope analyses-
dc.subject.keywordAuthorfeature extraction-
dc.identifier.urlhttps://ietresearch.onlinelibrary.wiley.com/doi/10.1049/iet-smt.2014.0023-
Files in This Item
Go to Link
Appears in
Collections
COLLEGE OF ENGINEERING SCIENCES > DEPARTMENT OF ROBOT ENGINEERING > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE