Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Molecular Insights Into the Evolutionary Pathway of Vibrio cholerae O1 Atypical El Tor Variantsopen access

Authors
Kim, Eun JinLee, DokyungMoon, Se HoonLee, Chan HeeKim, Sang JunLee, Jae HyunKim, Jae OukSong, MankiDas, BhabatoshClemens, John D.Pape, Jean WilliamNair, G. BalakrishKim, Dong Wook
Issue Date
Sep-2014
Publisher
PUBLIC LIBRARY SCIENCE
Keywords
GENETIC DIVERSITY; STRAINS; TOXIN-B; COMPARATIVE GENOMICS; CLASSICAL CTX PROPHAGE; ACQUISITION; MOZAMBIQUE; TANDEM REPEAT; EMERGENCE; HYBRID
Citation
PLOS PATHOGENS, v.10, no.9, pp.1 - 10
Indexed
SCIE
SCOPUS
Journal Title
PLOS PATHOGENS
Volume
10
Number
9
Start Page
1
End Page
10
URI
https://scholarworks.bwise.kr/erica/handle/2021.sw.erica/21987
DOI
10.1371/journal.ppat.1004384
ISSN
1553-7366
Abstract
Pandemic V. cholerae strains in the O1 serogroup have 2 biotypes: classical and El Tor. The classical biotype strains of the sixth pandemic, which encode the classical type cholera toxin (CT), have been replaced by El Tor biotype strains of the seventh pandemic. The prototype El Tor strains that produce biotype-specific cholera toxin are being replaced by atypical El Tor variants that harbor classical cholera toxin. Atypical El Tor strains are categorized into 2 groups, Wave 2 and Wave 3 strains, based on genomic variations and the CTX phage that they harbor. Whole-genome analysis of V. cholerae strains in the seventh cholera pandemic has demonstrated gradual changes in the genome of prototype and atypical El Tor strains, indicating that atypical strains arose from the prototype strains by replacing the CTX phages. We examined the molecular mechanisms that effected the emergence of El Tor strains with classical cholera toxin-carrying phage. We isolated an intermediary V. cholerae strain that carried two different CTX phages that encode El Tor and classical cholera toxin, respectively. We show here that the intermediary strain can be converted into various Wave 2 strains and can act as the source of the novel mosaic CTX phages. These results imply that the Wave 2 and Wave 3 strains may have been generated from such intermediary strains in nature. Prototype El Tor strains can become Wave 3 strains by excision of CTX-1 and re-equipping with the new CTX phages. Our data suggest that inter-chromosomal recombination between 2 types of CTX phages is possible when a host bacterial cell is infected by multiple CTX phages. Our study also provides molecular insights into population changes in V. cholerae in the absence of significant changes to the genome but by replacement of the CTX prophage that they harbor.
Files in This Item
Go to Link
Appears in
Collections
COLLEGE OF PHARMACY > DEPARTMENT OF PHARMACY > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher KIM, Dong Wook photo

KIM, Dong Wook
COLLEGE OF PHARMACY (DEPARTMENT OF PHARMACY)
Read more

Altmetrics

Total Views & Downloads

BROWSE