Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

M13 Bacteriophage as Materials for Amplifi ed Surface Enhanced Raman Scattering Protein Sensing

Authors
Lee, Ju HunXu, Phyllis F.Domaille, Dylan W.Choi, ChulminJin, SunghoCha, Jennifer N.
Issue Date
Apr-2014
Publisher
John Wiley & Sons Ltd.
Keywords
M13 bacteriophage; protein sensors; SERS; core-shell nanoparticles; DNA
Citation
Advanced Functional Materials, v.24, no.14, pp.2079 - 2084
Indexed
SCIE
SCOPUS
Journal Title
Advanced Functional Materials
Volume
24
Number
14
Start Page
2079
End Page
2084
URI
https://scholarworks.bwise.kr/erica/handle/2021.sw.erica/23321
DOI
10.1002/adfm.201303331
ISSN
1616-301X
Abstract
Because of their unique properties, nanomaterials have been actively investigated in recent years for biosensing applications. A typical approach for biomarker detection is to attach capture or detection antibodies to nanomaterials, allow the analyte to bind, and measure the resulting change in signal. While antibodies or aptamers possess at most one binding site each for the nanomaterial and analyte, it is shown that the high surface area filamentous M13 bacteriophage can be utilized as a scaffold for generating an amplified signal. Since only a few proteins at the tip of the micrometer-long virus are involved in antigen binding, the rest of the bacteriophage can be augmented with hundreds of functional groups, each of which can bind to a specific nanomaterial. It is demonstrated that the combination of DNA-modified M13 bacteriophage and surface enhanced Raman spectroscopy (SERS) active nanoparticles can be used to produce exponential gains in Raman signal compared to that of antibodies at the same antigen concentration. Because of these high sensitivities, Raman measurements can be made directly from individual silica microparticles, potentially enabling future single step identification and analysis of different proteins in complex mixtures, while avoiding additional processing steps or prepatterned microarrays.
Files in This Item
Go to Link
Appears in
Collections
COLLEGE OF ENGINEERING SCIENCES > DEPARTMENT OF BIONANO ENGINEERING > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Lee, Ju Hun photo

Lee, Ju Hun
ERICA 공학대학 (DEPARTMENT OF BIONANO ENGINEERING)
Read more

Altmetrics

Total Views & Downloads

BROWSE