A Robust Fault Diagnosis and Accommodation Scheme for Robot Manipulators
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Van, Mien | - |
dc.contributor.author | Kang, Hee-Jun | - |
dc.contributor.author | Suh, Young-Soo | - |
dc.contributor.author | Shin, Kyoo-Sik | - |
dc.date.accessioned | 2021-06-23T03:44:45Z | - |
dc.date.available | 2021-06-23T03:44:45Z | - |
dc.date.issued | 2013-04 | - |
dc.identifier.issn | 1598-6446 | - |
dc.identifier.issn | 2005-4092 | - |
dc.identifier.uri | https://scholarworks.bwise.kr/erica/handle/2021.sw.erica/28472 | - |
dc.description.abstract | This paper investigates an algorithm for robust fault diagnosis (FD) in uncertain robotic systems by using a neural sliding mode (NSM) based observer strategy. A step by step design procedure will be discussed to determine the accuracy of fault estimation. First, an uncertainty observer is designed to estimate the uncertainties based on a first neural network (NN1). Then, based on the estimated uncertainties, a fault diagnosis scheme will be designed by using a NSM observer which consists of both a second neural network (NN2) and a second order sliding mode (SOSM), connected serially. This type of observer scheme can reduce the chattering of sliding mode (SM) and guarantee finite time convergence of the neural network (NN). The obtained fault estimations are used for fault isolation as well as fault accommodation to self-correct the failure systems. The computer simulation results for a PUMA560 robot are shown to verify the effectiveness of the proposed strategy. | - |
dc.format.extent | 12 | - |
dc.language | 영어 | - |
dc.language.iso | ENG | - |
dc.publisher | INST CONTROL ROBOTICS & SYSTEMS, KOREAN INST ELECTRICAL ENGINEERS | - |
dc.title | A Robust Fault Diagnosis and Accommodation Scheme for Robot Manipulators | - |
dc.type | Article | - |
dc.publisher.location | 대한민국 | - |
dc.identifier.doi | 10.1007/s12555-012-0022-4 | - |
dc.identifier.scopusid | 2-s2.0-84879513778 | - |
dc.identifier.wosid | 000316818300018 | - |
dc.identifier.bibliographicCitation | INTERNATIONAL JOURNAL OF CONTROL AUTOMATION AND SYSTEMS, v.11, no.2, pp 377 - 388 | - |
dc.citation.title | INTERNATIONAL JOURNAL OF CONTROL AUTOMATION AND SYSTEMS | - |
dc.citation.volume | 11 | - |
dc.citation.number | 2 | - |
dc.citation.startPage | 377 | - |
dc.citation.endPage | 388 | - |
dc.type.docType | Article | - |
dc.identifier.kciid | ART001751712 | - |
dc.description.isOpenAccess | N | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.description.journalRegisteredClass | kci | - |
dc.relation.journalResearchArea | Automation & Control Systems | - |
dc.relation.journalWebOfScienceCategory | Automation & Control Systems | - |
dc.subject.keywordPlus | SLIDING-MODE OBSERVER | - |
dc.subject.keywordPlus | SYSTEMS | - |
dc.subject.keywordPlus | Computer simulation | - |
dc.subject.keywordPlus | Electric fault currents | - |
dc.subject.keywordPlus | Estimation | - |
dc.subject.keywordPlus | Failure analysis | - |
dc.subject.keywordPlus | Neural networks | - |
dc.subject.keywordPlus | Robot applications | - |
dc.subject.keywordPlus | Uncertainty analysis | - |
dc.subject.keywordAuthor | Fault accommodation | - |
dc.subject.keywordAuthor | fault detection | - |
dc.subject.keywordAuthor | fault diagnosis | - |
dc.subject.keywordAuthor | neural network | - |
dc.subject.keywordAuthor | nonlinear model | - |
dc.subject.keywordAuthor | sliding mode observer | - |
dc.identifier.url | https://link.springer.com/article/10.1007/s12555-012-0022-4 | - |
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.
55 Hanyangdeahak-ro, Sangnok-gu, Ansan, Gyeonggi-do, 15588, Korea+82-31-400-4269 sweetbrain@hanyang.ac.kr
COPYRIGHT © 2021 HANYANG UNIVERSITY. ALL RIGHTS RESERVED.
Certain data included herein are derived from the © Web of Science of Clarivate Analytics. All rights reserved.
You may not copy or re-distribute this material in whole or in part without the prior written consent of Clarivate Analytics.