Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

A study on the optimal shape of wave energy conversion system using an oscillating water column

Authors
Shin, SungwonLee, Kwang-HoKim, Do-SamKim, Kyu-HanHong, Keyyong
Issue Date
Apr-2013
Publisher
Coastal Education & Research Foundation, Inc.
Keywords
3-dimensional numerical wave flume; Air flow; OWC wave power generation system; Two-phase flow
Citation
Journal of Coastal Research, no.sp. 65(2), pp 1663 - 1668
Pages
6
Indexed
SCI
SCIE
SCOPUS
Journal Title
Journal of Coastal Research
Number
sp. 65(2)
Start Page
1663
End Page
1668
URI
https://scholarworks.bwise.kr/erica/handle/2021.sw.erica/29266
DOI
10.2112/SI65-281.1
ISSN
0749-0208
1551-5036
Abstract
With the intention of diversifying energy sources, the use of natural and renewable energy sources such as sunlight, wind, tides, geothermal heats and waves is attracting favorable attention. Furthermore, current environmental issues, including global warming, ozone depletion and nuclear problems, promote development of renewable energy technologies. Many renewable energy technologies are however still under progress. Among these, the wave energy conversion system using an oscillating water column (OWC) is nearing commercial stage. OWC use the air flow induced by the vertical motion of water column in the air chamber as a driving force of turbine. Although it is well known that OWC is one of the most efficient devices to harness wave power, there is still much uncertainty about the relationship between the optimal shape and its hydrodynamic performance under the confined wave conditions. In this study, we propose a new computational fluid dynamics solver using on the immiscible two-phase (gas and water) flow model to simulate an OWC system in a two and three dimensional numerical wave tank. The numerical experiments focus on air flow velocity directly related to the working of turbine to survey the optimal shape. In order to validate the developed numerical model, laboratory experiments for the simplified OWC are carried out in a wave tank under regular wave conditions. The comparisons between the results of the developed numerical model and experimental data reveal a favorable agreement between the air flow velocity as well as the water surface profiles. Based on the validated numerical model, the effects of the inlet and chamber shapes including length, height, width and slope on the maximum air flow velocity are numerically investigated. As a result, in case the non-dimensional chamber width normalized by the incident wave length is in the range of 0.12 to 0.43, the maximum air flow velocity occurs with the increase of the inlet height and shortness of the inlet length. © Coastal Education & Research Foundation 2013.
Files in This Item
Go to Link
Appears in
Collections
COLLEGE OF SCIENCE AND CONVERGENCE TECHNOLOGY > DEPARTMENT OF MARINE SCIENCE AND CONVERGENCE ENGINEERING > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Shin, Sungwon photo

Shin, Sungwon
COLLEGE OF SCIENCE AND CONVERGENCE TECHNOLOGY (DEPARTMENT OF MARINE SCIENCE AND CONVERGENCE ENGINEERING)
Read more

Altmetrics

Total Views & Downloads

BROWSE