Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

도로기상정보시스템(RWIS)과 차량검지기(VDS) 자료를 이용한 강우수준별 통행속도예측Prediction of Speed by Rain Intensity using Road Weather Information System and Vehicle Detection System data

Other Titles
Prediction of Speed by Rain Intensity using Road Weather Information System and Vehicle Detection System data
Authors
정은비오철홍성민
Issue Date
Aug-2013
Publisher
한국ITS학회
Keywords
도로 기상정보 수집시스템; 검지기; 강우수준; 교통예측; 인공신경망; road weather information system (RWIS); vehicle detection system (VDS); rain intensity; traffic prediction; artifitial neural network (ANN)
Citation
한국ITS학회 논문지, v.12, no.4, pp 44 - 55
Pages
12
Indexed
KCI
Journal Title
한국ITS학회 논문지
Volume
12
Number
4
Start Page
44
End Page
55
URI
https://scholarworks.bwise.kr/erica/handle/2021.sw.erica/29719
DOI
10.12815/kits.2013.12.4.044
ISSN
1738-0774
2384-1729
Abstract
지능형교통체계(ITS: Intelligent Transportation System)의 발전은 과거에 비해 보다 신뢰성 있고 폭넓은 교통자료 및 기상자료 등의 취득을 가능하도록 하였다. 이러한 첨단 시스템의 발전에 따라 수집된 자료를 이용하여 교통상황과 기상상황에 대한 다양한 연구가 활발히 진행되고 있다. 본 연구에서는 도로 기상정보 시스템(RWIS: Road Weather Information System)자료와 검지기 자료를 이용하여 강우량에 따른 속도 감소 패턴을 분석하고, 강우량에 따른 속도감소량 산출 결과를 통해 강우수준을 분류하는 기준을 제시하였다. 인공신경망을 이용하여 강우수준별 통행속도를 예측하였으며, 예측 결과를 비교하여 강우수준별 통행속도 예측 특성을 분석하였다. 분석결과, 강우수준 분류 기준은 0.4mm/5min, 0.8mm/5min으로 나타났으며, 강우수준별 속도와 교통량에 대한 분산분석 결과 강우수준별로 차이를 보이는 것으로 나타났다. 인공신경망을 통한 5분 단위의 통행속도 예측결과, 비강우인 경우에는 과거 5개 자료, 즉, 25분 동안의 속도자료를 사용하여 분석하는 것이 예측력이 높게 나타났으며, 강우가 발생하는 경우에는 과거 2~3개 자료, 즉, 10~15분 동안의 속도자료를 사용하는 것이 예측력이 높게 나타났다. 본 연구에서는 기상조건에 관계없이 신뢰성 있는 교통정보를 제공하기 위한 통행시간 예측 방법론을 제시함으로써 통행시간 정보 등의 교통정보 제공 시 보다 정확한 정보를 제공하여 교통상황 예측정보의 신뢰도 향상 및 교통상황 예측정보의 활용도를 증대시킬 수 있을 것으로 기대된다.
Intelligent transportation systems allow us to have valuable opportunities for collecting reliable wide-area coverage traffic and weather data. Significant efforts have been made in many countries to apply these data. This study identifies the critical points for classifying rain intensity by analyzing the relationship between rainfall and the amount of speed reduction. Then, traffic prediction performance by rain intensity level is evaluated using relative errors. The results show that critical points are 0.4mm/5min and 0.8mm/5min for classifying rain intensity (slight, moderate, and heavy rain). The best prediction performance is observable when previous five-block speed data is used as inputs under normal weather conditions. On the other hand, previous two or three-block speed data is used as inputs under rainy weather conditions. The outcomes of this study support the development of more reliable traffic information for providing advanced traffic information service.
Files in This Item
Go to Link
Appears in
Collections
COLLEGE OF ENGINEERING SCIENCES > DEPARTMENT OF TRANSPORTATION AND LOGISTICS ENGINEERING > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher OH, CHEOL photo

OH, CHEOL
ERICA 공학대학 (DEPARTMENT OF TRANSPORTATION AND LOGISTICS ENGINEERING)
Read more

Altmetrics

Total Views & Downloads

BROWSE