Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Enhancement of a Flapping Wing Using Path and Dynamic Topology Optimization

Authors
Choi, Jung-SunZhao, LiangyuPark, Gyung-JinAgrawal, Sunil K.Kolonay, Raymond M.
Issue Date
Dec-2011
Publisher
American Institute of Aeronautics and Astronautics
Keywords
DESIGN; RESPONSE STRUCTURAL OPTIMIZATION; MOTION; FLIGHT; EQUIVALENT STATIC LOADS; AIRFOIL; BIPLANE CONFIGURATION; PROPULSIVE EFFICIENCY
Citation
AIAA Journal, v.49, no.12, pp 2616 - 2626
Pages
11
Indexed
SCI
SCIE
SCOPUS
Journal Title
AIAA Journal
Volume
49
Number
12
Start Page
2616
End Page
2626
URI
https://scholarworks.bwise.kr/erica/handle/2021.sw.erica/36376
DOI
10.2514/1.J050834
ISSN
0001-1452
1533-385X
Abstract
The flapping wing of a micro air vehicle is optimized to enhance performance while some rigidity is kept with a specific mass. A work flow for the design of the flapping wing is defined. The performances to be enhanced are thrust coefficient and propulsive efficiency. The flapping kinematics of the flapping wing is determined by solving a path optimization problem that maximizes the performances. The optimization process is carried out based on a well-defined surrogate model. The surrogate model is made from the results of two-dimensional fluid dynamic analysis. The kriging method is employed to establish the surrogate model and a genetic algorithm is used for the multi. objective function problem. Dynamic topology optimization is performed to find the distribution of reinforcement. Certain rigidity can be kept by the results of topology optimization. A dynamic topology optimization method is developed by modification of the equivalent static loads method for nonlinear static response structural optimization. Three-dimensional computational fluid dynamic analysis is performed based on the optimum values of the path optimization to evaluate the external loads for the topology optimization process. The process of the defined work flow is materialized by interfacing various software systems.
Files in This Item
Go to Link
Appears in
Collections
COLLEGE OF ENGINEERING SCIENCES > DEPARTMENT OF MECHANICAL ENGINEERING > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE